Advertisement

Acta Mathematica

, Volume 131, Issue 1, pp 145–206 | Cite as

Lacunas for hyperbolic differential operators with constant coefficients. II

  • M. F. Atiyah
  • R. Bott
  • L. Gårding
Article

Keywords

Differential Operator Constant Coefficient Hyperbolic Differential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Andersson, K. G., Propagation of analyticity of solutions of partial differential equation with constant coefficients.Ark. Mat., 8 (27) (1970), 277–302.MathSciNetGoogle Scholar
  2. [2].
    Atiyah, M. F., Bott, R. &Gårding, L., Lacumas for hyperbolic differential operators with constant coefficients I.Acta Math., 124 (1970), 109–189.MathSciNetGoogle Scholar
  3. [3].
    Atiyah, M. F. &Hodge, W. D. V., Integrals of the second kind of an algebraic variety.Ann. of Math., 62 (1955), 56–91.CrossRefMathSciNetGoogle Scholar
  4. [4].
    Bazer, J. &Yen, D. H. Y., The Riemann matrix of (2+1)-dimensional symmetrichyperbolic systems.Comm. Pure Appl. Math., 20 (1967), 329–363.MathSciNetGoogle Scholar
  5. [5].
    Bony, J. M. &Schapira, P., Existence et prolongement des solutions analytiques des systèmes hyperboliques non stricts.C. R. Acad. Sci. Paris Sér. A.-B., 274 (1972), 86–89.MathSciNetGoogle Scholar
  6. [6].
    Bott, R., Homogeneous vector bundles.Ann. of Math., 66 (1957), 203–255.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7].
    Cartan, H. & Eilenberg, S.,Homological algebra. Princeton 1956.Google Scholar
  8. [8].
    Gårding, L., Local hyperbolicity.Israel J. Math., 13 (1972), 65–81.MathSciNetGoogle Scholar
  9. [9].
    Godement, R.,Topologie Algebrique et Theorie des Faisceaux. Paris 1958.Google Scholar
  10. [10].
    Griffiths, P. H. A., On the periods of certain rational integrals I, II.Ann. of Math., 90 (1969), 460–541.CrossRefzbMATHGoogle Scholar
  11. [11].
    Grothendieck, A., Eléments de géometrie algébrique III. Étude cohomologique des faisceaux cohérents.Publ. IHES, 17 (1963), 5–91.Google Scholar
  12. [12].
    —, On the de Rham cohomology of algebraic varieties.Publ. IHES, 29 (1966), 351–359zbMATHGoogle Scholar
  13. [13].
    Hartshorne, R., Ample vector bundles.Publ. IHES, 29 (1966), 63–94.zbMATHMathSciNetGoogle Scholar
  14. [14].
    Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero I, II.Ann. of Math., 79 (1964), 109–326.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15].
    Mathisson, M., Le problème de Hadamard relatif à la diffusion des ondes.Acta Math., 71 (1939), 249–282.zbMATHMathSciNetGoogle Scholar
  16. [16].
    Petrovsky, I. G., On the diffusion of waves and the lacunas for hyperbolic equations.Mat. Sb., 17 (59) (1945), 289–370.Google Scholar
  17. [17].
    Serre, J.-P., Faisceux algébriques cohérents.Ann. of Math., 61 (1955), 197–278.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18].
    —, Un théorème de dualité.Comment. Math. Helv. 29 (1955), 9–26.zbMATHMathSciNetGoogle Scholar
  19. [19].
    —, Géometrie algébrique et géometrie analytique.Ann. Inst. Fourier, 6 (1956), 1–42.zbMATHMathSciNetGoogle Scholar
  20. [20].
    Svensson, S. L., Necessary and sufficient conditions for the hyperbolicity of polynomials with hyperbolic principal part.Ark. Mat., 8 (17) (1969), 145–162.MathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1973

Authors and Affiliations

  • M. F. Atiyah
    • 1
  • R. Bott
    • 2
  • L. Gårding
    • 3
  1. 1.University of OxfordOxfordUK
  2. 2.Harvard UniversityBostonUSA
  3. 3.University of LundLundSweden

Personalised recommendations