Acta Mathematica

, Volume 131, Issue 1, pp 145–206 | Cite as

Lacunas for hyperbolic differential operators with constant coefficients. II

  • M. F. Atiyah
  • R. Bott
  • L. Gårding
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Andersson, K. G., Propagation of analyticity of solutions of partial differential equation with constant coefficients.Ark. Mat., 8 (27) (1970), 277–302.MathSciNetGoogle Scholar
  2. [2].
    Atiyah, M. F., Bott, R. &Gårding, L., Lacumas for hyperbolic differential operators with constant coefficients I.Acta Math., 124 (1970), 109–189.MathSciNetGoogle Scholar
  3. [3].
    Atiyah, M. F. &Hodge, W. D. V., Integrals of the second kind of an algebraic variety.Ann. of Math., 62 (1955), 56–91.CrossRefMathSciNetGoogle Scholar
  4. [4].
    Bazer, J. &Yen, D. H. Y., The Riemann matrix of (2+1)-dimensional symmetrichyperbolic systems.Comm. Pure Appl. Math., 20 (1967), 329–363.MathSciNetGoogle Scholar
  5. [5].
    Bony, J. M. &Schapira, P., Existence et prolongement des solutions analytiques des systèmes hyperboliques non stricts.C. R. Acad. Sci. Paris Sér. A.-B., 274 (1972), 86–89.MathSciNetGoogle Scholar
  6. [6].
    Bott, R., Homogeneous vector bundles.Ann. of Math., 66 (1957), 203–255.CrossRefMATHMathSciNetGoogle Scholar
  7. [7].
    Cartan, H. & Eilenberg, S.,Homological algebra. Princeton 1956.Google Scholar
  8. [8].
    Gårding, L., Local hyperbolicity.Israel J. Math., 13 (1972), 65–81.MathSciNetGoogle Scholar
  9. [9].
    Godement, R.,Topologie Algebrique et Theorie des Faisceaux. Paris 1958.Google Scholar
  10. [10].
    Griffiths, P. H. A., On the periods of certain rational integrals I, II.Ann. of Math., 90 (1969), 460–541.CrossRefMATHGoogle Scholar
  11. [11].
    Grothendieck, A., Eléments de géometrie algébrique III. Étude cohomologique des faisceaux cohérents.Publ. IHES, 17 (1963), 5–91.Google Scholar
  12. [12].
    —, On the de Rham cohomology of algebraic varieties.Publ. IHES, 29 (1966), 351–359MATHGoogle Scholar
  13. [13].
    Hartshorne, R., Ample vector bundles.Publ. IHES, 29 (1966), 63–94.MATHMathSciNetGoogle Scholar
  14. [14].
    Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero I, II.Ann. of Math., 79 (1964), 109–326.CrossRefMATHMathSciNetGoogle Scholar
  15. [15].
    Mathisson, M., Le problème de Hadamard relatif à la diffusion des ondes.Acta Math., 71 (1939), 249–282.MATHMathSciNetGoogle Scholar
  16. [16].
    Petrovsky, I. G., On the diffusion of waves and the lacunas for hyperbolic equations.Mat. Sb., 17 (59) (1945), 289–370.Google Scholar
  17. [17].
    Serre, J.-P., Faisceux algébriques cohérents.Ann. of Math., 61 (1955), 197–278.CrossRefMATHMathSciNetGoogle Scholar
  18. [18].
    —, Un théorème de dualité.Comment. Math. Helv. 29 (1955), 9–26.MATHMathSciNetGoogle Scholar
  19. [19].
    —, Géometrie algébrique et géometrie analytique.Ann. Inst. Fourier, 6 (1956), 1–42.MATHMathSciNetGoogle Scholar
  20. [20].
    Svensson, S. L., Necessary and sufficient conditions for the hyperbolicity of polynomials with hyperbolic principal part.Ark. Mat., 8 (17) (1969), 145–162.MathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1973

Authors and Affiliations

  • M. F. Atiyah
    • 1
  • R. Bott
    • 2
  • L. Gårding
    • 3
  1. 1.University of OxfordOxfordUK
  2. 2.Harvard UniversityBostonUSA
  3. 3.University of LundLundSweden

Personalised recommendations