Acta Mathematica

, Volume 121, Issue 1, pp 193–218

The spectral function of an elliptic operator

  • Lars Hörmander


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Agmon, S. &Kannai, Y., On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators.Israel J. Math., 5 (1967), 1–30.MathSciNetGoogle Scholar
  2. [2].
    Avakumovič, V. G., Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten.Math. Z., 65 (1956), 327–344.CrossRefMathSciNetGoogle Scholar
  3. [3].
    Carleman, T., Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes.C. R. Sème Congr. des Math. Scand. Stockholm 1934; 34–44 (Lund 1935).Google Scholar
  4. [4].
    Gårding, L., On the asymptotic distribution of the eigenvalues and eigenfunctions of elliptic differential operators.Math. Scand., 1 (1953), 237–255.MATHMathSciNetGoogle Scholar
  5. [5].
    —, On the asymptotic properties of the spectral function belonging to a self-adjoint semi-bounded extension of an elliptic differential operator.Kungl. Fysiogr. Sällsk. i Lund Förh., 24, No. 21 (1954), 1–18.Google Scholar
  6. [6].
    Hörmander, L., Pseudo-differential operators.Comm. Pure Appl. Math., 18 (1965), 501–517.MATHMathSciNetGoogle Scholar
  7. [7].
    —, Pseudo-differential operators and hypoelliptic equations.Amer. Math. Soc. Proc. Symp. Pure Math., 10 (1968), 138–183.Google Scholar
  8. [8].
    Hörmander, L., On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators.Recent Advances in the Basic Sciences, Yeshiva University Conference November 1966, 155–202 (to appear).Google Scholar
  9. [9].
    Lax, P. D., Asymptotic solutions of oscillatory initial value problems.Duke Math. J., 24 (1957), 627–646.CrossRefMATHMathSciNetGoogle Scholar
  10. [10].
    Lewitan, B. M., On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order.Izv. Akad. Nauk SSSR Sér. Mat., 16 (1952), 325–352.Google Scholar
  11. [11].
    —, On the asymptotic behavior of the spectral function and the eigenfunction expansion of self-adjoint differential equations of the second order II.Izv. Akad. Nauk SSSR Sér. Mat., 19 (1955), 33–58.Google Scholar
  12. [12].
    Minakshisundaram, S. &Pleijel, Å., Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds.Canad. J. Math., 4 (1952), 26–30.Google Scholar
  13. [13].
    Müller, C.,Spherical harmonics. Springer-Verlag lecture notes in mathematics, 17 (1966).Google Scholar
  14. [14].
    Seeley, R. T., Complex powers of an elliptic operator.Amer. Math. Soc. Proc. Symp. Pure Math., 10 (1968), 288–307.Google Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1968

Authors and Affiliations

  • Lars Hörmander
    • 1
  1. 1.University of LundLundSweden

Personalised recommendations