Advertisement

Acta Mathematica

, Volume 113, Issue 1, pp 241–318 | Cite as

Discrete series for semisimple Lie groups I

Construction of invariant eigendistributions
  • Harish-Chandra
Article

Keywords

Positive Root Cartan Subalgebra Discrete Series Cartan Subgroup Semisimple Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Borel, A., &Harish-Chandra, Arithmetic subgroups of algebraic groups.Ann. of Math., 75 (1962), 485–535.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2](a).
    Harish-Chandra, Representations of semisimple Lie groups, VI.Amer. J. Math., 78 (1956), 564–628.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [2](b).
    —, The characters of semisimple Lie groups.Trans. Amer. Math. Soc., 83 (1956), 98–163.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [2](c).
    —, Differential operators on a semisimple Lie algebra.Amer. J. Math., 79 (1957), 87–120.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [2](d).
    —, Fourier transforms on a semisimple Lie algebra, I.Amer. J. Math., 79 (1957), 193–257.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [2](e).
    —, Fourier transforms on a semisimple Lie algebra, II.Amer. J. Math. 79 (1957), 653–686.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [2](f).
    —, A formula for semisimple Lie groups.Amer. J. Math., 79 (1957), 733–760.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [2](g).
    —, Spherical functions on a semisimple Lie group, I.Amer. J. Math., 80 (1958), 241–310.MathSciNetCrossRefGoogle Scholar
  9. [2](h).
    —, Invariant eigendistributions on semisimple Lie groups.Bull. Amer. Math. Soc., 69 (1963), 117–123.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [2](i).
    —, Invariant distributions on Lie algebras.Amer. J. Math., 86 (1964), 271–309.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [2](j).
    —, Invariant differential operators and distributions on a semisimple Lie algebra.Amer. J. Math., 86 (1964), 534–564.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [2](k).
    —, Some results on an invariant integral on a semisimple Lie algebra.Ann. of Math., 80 (1964), 551–593.MathSciNetCrossRefGoogle Scholar
  13. [2](l).
    Harish-Chandra Invariant eigendistributions on a semisimple Lie algebra.Pub. Math. I.H.E.S., No. 27.Google Scholar
  14. [2](m).
    Harish-Chandra, Invariant eigendistributions on a semisimple Lie group.Trans. Amer. Math. Soc. To appear.Google Scholar
  15. [3].
    Schwartz L.,Théorie des distributions, II. Paris, Hermann, 1951.zbMATHGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1965

Authors and Affiliations

  • Harish-Chandra
    • 1
  1. 1.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations