Advertisement

Biomedical Engineering

, Volume 34, Issue 4, pp 207–212 | Cite as

Interactive determination of the parameters of mathematical models used for planning of radiation therapy of malignant tumors. Part 1. mathematical models for calculating the tolerant doses, adequate doses, and the probability of post-radiation complications in normal organs and tissues

  • L. Ya. Klepper
Research, Design, And Technology
  • 23 Downloads

Keywords

Radiation Mathematical Model Malignant Tumor Normal Organ Adequate Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. B. Keirim-Markus, Equidosimetry [in Russian], Moscow (1980).Google Scholar
  2. 2.
    L. Ya. Klepper, Formation of Dose Fields by Remote Radiation Sources [in Russian], Moscow (1986).Google Scholar
  3. 3.
    L. Ya. Klepper, Formation of Dose Fields by Radioactive Sources of Radiation [in Russian], Moscow (1993).Google Scholar
  4. 4.
    L. Ya. Klepper, Med. Tekh., No. 2, 24–27 (1997).Google Scholar
  5. 5.
    L. Ya. Klepper, Med. Radiol. Radiats. Bezopasn., No. 1, 47–50 (1997).Google Scholar
  6. 6.
    L. Ya. Klepper, Med. Tekh., No. 5, 6–10 (1999).Google Scholar
  7. 7.
    M. A. Fadeeva, K. N. Kostromina, V. S. Datsenko, et al., Methodological Recommendations: Time-Dose-Fraction Factors and Their Use in Radiation Therapy of Malignant Tumors [in Russian], Moscow (1987).Google Scholar
  8. 8.
    Viability of Cells Exposed to Low Doses of Radiation: Theoretical and Clinical Aspects [in Russian], Moscow (1980).Google Scholar
  9. 9.
    G. W. Barendsen, Int. J. Radiat. Oncol. Biol. Phys.,8, 1981–1997 (1982).Google Scholar
  10. 10.
    K. H. Chadwick and H. P. Leenhouts, Phys. Med. Biol.,18, 78–87 (1973).CrossRefGoogle Scholar
  11. 11.
    L. Cohen and M. Creditor, Int. J. Radiat. Oncol. Biol. Phys.,9, 233–241 (1983).Google Scholar
  12. 12.
    B. Douglas and I. Fowler, Radiat. Res.,66, 401–426 (1976).Google Scholar
  13. 13.
    F. Ellis, Clin. Radiol., No. 1, 1–7 (1969).Google Scholar
  14. 14.
    A. M. Kellerer and H. H. Rossi, Radiat. Res.,47, No. 1, 14–34 (1971).Google Scholar
  15. 15.
    J. Kirk, W. Gray, and E. Watson, Clin. Radiol.,22, 145–155 (1971).CrossRefGoogle Scholar
  16. 16.
    J. T. Lyman and A. B. Wolbarst, Int. J. Radiat. Oncol. Biol. Phys.,13, 103–109 (1987).Google Scholar
  17. 17.
    C. Orton and F. Ellis, Brit. J. Radiol.,46, No. 457, 529–537 (1973).Google Scholar
  18. 18.
    C. Orton and L. Cohen, Int. J. Radiat. Oncol. Biol. Phys.,14, No. 3, 601 (1988).Google Scholar
  19. 19.
    C. Orton, Proc. Summer School of American Association of Physicists in Medicine (AAPM),19, 374–389 (1990).Google Scholar
  20. 20.
    W. Weibull, J. Appl. Mechan.,18, 293 (1951).zbMATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • L. Ya. Klepper
    • 1
  1. 1.Central Institute of Mathematical EconomicsRussian Academy of SciencesMoscow

Personalised recommendations