Vegetatio

, Volume 29, Issue 2, pp 89–99 | Cite as

Catenation: Quantitative methods for the definition of coenoclines

  • Imanuel Noy-Meir
Article

Summary

Catenation is defined as the ordering of elements in continuous sequences that best accounts for local similarities without assuming linear relations. It is thus a non-linear relative of ordination. When applied to phytosociological data it is equivalent to the detection and definition of coenoclines.

Several mathematical methods of catenation are available and potentially useful in phytosociology. One such method, continuity analysis (parametric mapping) has been tested on a variety of simulated and real vegetation data. Despite some computation problems, it usually succeeded in accurately recovering simulated coenoclines which were strongly curved in Euclidean vegetation space. In data from Wisconsin vegetation it defined a first catena which was similar to the ‘continuum’ defined by the leading dominants method; but in one case indicated some modifications and the existence of a second dimension. When applied to other sets of real data, the method detected between one and three catenae or nonlinear dimensions, which were usually closely related to environmental gradients. The relationships of species (or communities) to these catenae tended to be of a bell-shaped form, even though such a form is not explicitly assumed in the method.

Keywords

Catenation Coenocline Continuity analysis Ordination Parametric mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Austin, M. P. & I. Noy-Meir 1971. The problem of non-linearity in ordination: experiments with two-gradient models. J. Ecol. 59: 763–773.Google Scholar
  2. Ayyad, M. A. G. & R. L. Dix 1964. An analysis of a vegetation-microenvironmental complex on prairie slopes in Saskatchewan. Ecol. Monogr. 34: 421–442.Google Scholar
  3. Bannister, P. 1968. An evaluation of some procedures used in simple ordinations. J. Ecol. 56: 27–34.Google Scholar
  4. Beals, E. W. & J. B. Cope 1964. Vegetation and soils in Eastern Indiana woods. Ecology 45: 777–799.Google Scholar
  5. Bray, J. R. & J. T. Curtis 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.Google Scholar
  6. Brown, R. T. & J. T. Curtis 1952. The upland conifer-hardwood forests of northern Wisconsin. Ecol. Monogr. 22: 217–234.Google Scholar
  7. Buell, M. F., A. N. Langford, D. W. Davidson & L. F. Ohmann, 1966. The upland forest continuum in northern New Jersey. Ecology 47: 416–432.Google Scholar
  8. Curtis, J. T. & R. P. McIntosh 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476–496.Google Scholar
  9. Flenley, J. R. 1969. The vegetation of the Wabag region, New Guinea highlands: a numerical study. J. Ecol. 57: 465–490.Google Scholar
  10. Gauch, H. G. Jr. 1973a. The relationship between sample similarity and ecological distance. Ecology 54: 618–622.Google Scholar
  11. Gauch, H. G. Jr. 1973b. A quantitative evaluation of the Bray-Curtis ordination. Ecology 54: 829–836.Google Scholar
  12. Gauch, H. G. Jr. & G. B. Chase 1973. Fitting the Gaussian curve in ecological applications. (manuscript).Google Scholar
  13. Gauch, H. G. Jr., G. B. Chase & R. H. Whittaker 1973. Ordination of vegetation samples by Gaussian species distributors. (manuscript).Google Scholar
  14. Gauch, H. G. Jr. & R. H. Whittaker 1972a. Coenocline simulation. Ecology 53: 446–451.Google Scholar
  15. Gauch, H. G. Jr. & R. H. Whittaker 1972b. Comparison of ordination techniques. Ecology 53: 868–875.Google Scholar
  16. Gimingham, C. H., N. M. Pritchard & R. M. Cormack 1966. Interpretation of a vegetational mosaic on limestone in the island of Gotland. J. Ecol. 54: 481–502.Google Scholar
  17. Goodall, D. W. 1954. Objective methods for the classification of vegetation. III. An essay in the use of factor analysis. Aust. J. Bot. 2: 304–324.CrossRefGoogle Scholar
  18. Greig-Smith, P. 1964. Quantitative plant ecology (2nd edition). Butterworths, London. XII+256 pp.Google Scholar
  19. Groenewoud, H. van 1965. An analysis and classification of white spruce communities in relation to certain habitat factors. Can. J. Bot. 43: 1025–1036.Google Scholar
  20. Groenewoud, H. van 1973. Theoretical considerations on the quantitative covariation of plant species along ecological gradients with regard to the multivariate analysis of vegetation data. (manuscript).Google Scholar
  21. Guttman, P. 1955. A generalized simplex for factor analysis. Psychometrika 20: 173–192.Google Scholar
  22. Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.Google Scholar
  23. Kruskal, J. B. & J. D. Carroll 1969. Geometrical models and badness-of-fit functions. Multivariate analysis II, ed. P. R. Krishnaiah, 639–671. Academic.Google Scholar
  24. Maarel, E. van der 1969. On the use of ordination models in phytosociology. (Germ. summ.) Vegetatio 19: 21–46.Google Scholar
  25. Maarel, E. van der & J. Leertouwer 1967. Variation in vegetation and species diversity along a local environmental gradient. Acta Bot. Neerl. 16: 211–221.Google Scholar
  26. McDonald, R. P. 1962. A general approach to nonlinear factor analysis. Psychometrika 27: 397–415.Google Scholar
  27. McDonald, R. P. 1967. Numerical methods for polynomial models in nonlinear factor analysis. Psychometrika 32: 77–112Google Scholar
  28. McIntosh, R. P. 1973. Matrix and plexus techniques. (Germ. summ.) In: Ordination and Classification of Communities, ed. R. H. Whittaker. Handbook of Vegetation Science 5: 159–191. Junk, The Hague.Google Scholar
  29. Moore, J. J., P. Fitzsimmons, E. Lambe & J. White 1970. A comparison and evaluation of some phytosociological techniques. Vegetation 20: 1–20.Google Scholar
  30. Norris, J. M. & J. P. Barkham 1970. A comparison of some Cotswold beechwoods using multiple-discriminant analysis. J. Ecol. 58: 603–620.Google Scholar
  31. Noy-Meir, I. 1970. Component analysis of semi-arid vegetation in southeastern Australia. Ph. D. thesis, Australian National University, Canberra.Google Scholar
  32. Noy-Meir, I. 1971. Multivariate analysis of the semi-arid vegetation in South-eastern Australia. I. Nodal ordination by component analysis. Proc. Ecol. Soc. Austr. 6: 159–193.Google Scholar
  33. Noy-Meir, I. 1974. Multivariate analysis of the semi-arid vegetation in South-eastern Australia. II. Vegetation catenae and environmental gradients. Austr. J. Bot. 22: 115–140.Google Scholar
  34. Noy-Meir, I. & M. P. Austin 1970. Principal component ordination and simulated vegetational data. Ecology 51: 551–552.Google Scholar
  35. Orloci, L. 1966. Geometric models in ecology. I. The theory and application of some ordination models. J. Ecol. 54: 193–215.Google Scholar
  36. Orloci, L. 1967. An agglomeration method for classification of plant communities. J. Ecol. 55: 193–206.Google Scholar
  37. Orloci, L. 1973. Ordination by resemblance matrices. (Germ. summ.) In: Ordination and Classification of Communities, ed. R. H. Whittaker. Handbook of Vegetation Science 5: 251–286. Junk, The Hague.Google Scholar
  38. Shepard, R. N. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. I and II. Psychometrika 27: 125–140 and 219–246.Google Scholar
  39. Shepard, R. N. & J. D. Carroll 1966. Parametric representation of non-linear data structures. In: Multivariate analysis, ed. P. R. Krishnaiah, P. 561–592. Academic.Google Scholar
  40. Sneath, P. H. A. 1966. A method for curve seeking from scattered points. Comput. J. 8: 383–391.Google Scholar
  41. Swan, J. M. A. 1970. An examination of some ordination problems by use of simulated vegetation data. Ecology 51: 89–102.Google Scholar
  42. Swan, J.M.A., R. L. Dix & C. F. Wehrhahn 1969. An ordination technique based on the best possible stand-defined axes and its application to vegetational analysis. Ecology 50: 206–212.Google Scholar
  43. Wade, L. K. 1968. The alpine and subalpine vegetation of Mt. Wilhelm, New Guinea. Ph. D. Thesis, Australian National University, Canberra.Google Scholar
  44. Westhoff, V. & E. van der Maarel 1973. The Braun-Blanquet approach. In: Ordination and Classification of Communities, ed. R. H. Whittaker. Handbook of Vegetation Science, 5: 617–726. Junk, The Hague.Google Scholar
  45. Whittaker, R. H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.Google Scholar
  46. Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 279–338.Google Scholar
  47. Whittaker, R. H. 1967. Gradient analysis of vegetation. Biol. Rev. 49: 207–264.Google Scholar
  48. Whittaker, R. H. 1970. The population structure of vegetation. (Germ. summ.) In: Gesellschaftsmorphologie (Strukturforschung), ed. R. Tüxen, Ber. Symp. Int. Ver. Vegetationskunde, Rinteln 1966: 39–62.Google Scholar
  49. Whittaker, R. H. & H. G. Gauch, Jr. 1973. Evaluation of ordination techniques. (Germ. summ.) In: Ordination and Classification of Communities, ed. R. H. Whittaker. Handbook of Vegetation Science 5: 289–322. Junk, The Hague.Google Scholar

Copyright information

© Dr. W. Junk b.v.-Publishers 1974

Authors and Affiliations

  • Imanuel Noy-Meir
    • 1
  1. 1.Department of BotanyThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations