Reliable Computing

, Volume 2, Issue 1, pp 3–33 | Cite as

Algebraic approach to the interval linear static identification, tolerance, and control problems, or one more application of kaucher arithmetic

  • Sergey P. Shary
Mathematical Research

Abstract

In this paper, theidentification problem, thetolerance problem, and thecontrol problem are treated for the interval linear equation Ax=b. These problems require computing an inner approximation of theunited solution set Σ∃∃(A, b)={x ∈ ℝn | (∃A ∈ A)(Ax ∈ b)}, of thetolerable solution set Σ∀∃(A, b)={x ∈ ℝn | (∀A ∈ A)(Ax ∈ b)}, and of thecontrollable solution set Σ∃∀(A, b)={x ∈ ℝn | (∀b ∈ b)(Axb)} respectively. Analgebraic approach to their solution is developed in which the initial problem is replaced by that of finding analgebraic solution of some auxiliary interval linear system in Kaucher extended interval arithmetic. The algebraic approach is proved almost always to give inclusion-maximal inner interval estimates of the solutionsets considered. We investigate basic properties of the algebraic solutions to the interval linear systems and propose a number of numerical methods to compute them. In particular, we present the simple and fastsubdifferential Newton method, prove its convergence and discuss numerical experiments.

Алгебраический подход к интервальным линейным статическим задачам идентификации, о допускаш и об управлении, или Еще одно применение арифметики Каухера

Abstract

Б этой работе рассматриваютсяэa¶rt;aчa u¶rt;eнmuфuxaцuu, эa¶rt;aчa o ¶rt;onyckax н эa¶rt;aчa o¶rt; ynpaвlenuu для интервальной линейной системы Ax=b, требующие нахожления внутренней оценки дляоб Σ∃∃(A, b)={x ∈ ℝn | (∃A ∈ A)(Ax ∈ b)}, Σ∀∃(A, b)={x ∈ ℝn | (∀A ∈ A)(Ax ∈ b)}, и Σ∃∀(A, b)={x ∈ ℝn | (∀b ∈ b)(Axb)} соответственно. Развиваетсян к их решению, при котором исходная задача заменяется задачей отысканиян для некоторой вспомогательной интервальной линейной системы в расширенной интервальной арифметике Каухера. Показано, что алгебраический нодход почти всегда дает максимальные по включению внутренние оценки для рассматриваемых множеств решений. Исследуются основные свойства алгебраическнх решений интервальных систем, обсужлаются численные метолы для их нахожления. Б частности, мы предалагаем простой и быстрыйн, доказываем его сходимость и приводим результаты численных экспериментов с ним.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alefeld, G. and Herzberger, J.Introduction to interval computations. Academic Press, New York, 1983.Google Scholar
  2. [2]
    Aubin, J.-P.L'analyse non linéaire et ses motivation économiques. Masson, Paris, 1984.Google Scholar
  3. [3]
    Barth, W. and Nuding, E.Optimale Lösung von Intervallgleichungssystemen. Computing12 (1974), pp. 117–125.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Beeck, H.Über Struktur und Abschätzungen der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten. Computing10 (1972), pp. 231–244.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    Birkhoff, G.Lattice theory. AMS, Providence, 1967.Google Scholar
  6. [6]
    Bourbaki, N.Eléménts de mathématique. Topologie générale. Hermann, Paris, 1958.Google Scholar
  7. [7]
    Collatz, L.Funktionalanalysis und numerische Mathematik. Springer-Verlag, Berlin, Höttingen, Heidelberg, 1964.Google Scholar
  8. [8]
    Dobronets, B. S. and Shaidurov, V. V.Two-sided numerical methods. Nauka, Novosibirsk, 1990 (in Russian).Google Scholar
  9. [9]
    Gardeñes, E. and Trepat, A.Fundamentals of SIGLA, an interval computing system over the completed set of intervals. Computing24 (1980), pp. 161–179.CrossRefMathSciNetGoogle Scholar
  10. [10]
    Gardeñes, E. and Trepat, A.SIGLA-PL/1. Development and applications. In: “Interval Mathematics 1980”, Academic Press, New York, 1980, pp. 301–315.Google Scholar
  11. [11]
    Kaucher, E.Algebraische Erweiterungen der Intervallrechnung unter Erhaltung Ordnungs- und Verbandsstrukturen. Computing, Suppl.1 (1977), pp. 65–79.Google Scholar
  12. [12]
    Kaucher, E.Interval analysis in the extended interval space Iℝ. Computing, Suppl.2 (1980), pp. 33–49.Google Scholar
  13. [13]
    Kelling, B. and Oelschlägel, D.Zur Lösung von linearen Toleranzproblemen. Wiss. Zeitschrift TH Leuna-Merseburg33 (1) (1990), pp. 121–131.Google Scholar
  14. [14]
    Krasnoselskii, M., Vainikko, G., Zabreiko, P., Rutitskii, Y., and Stetsenko, V.Approximate solutions of operator equations. Noordhoff, Groningen, 1972.Google Scholar
  15. [15]
    Kupriyanova, L.Inner estimation of the united solution set of interval linear algebraic system. Reliable Computing1 (1) (1995), pp. 15–31.MATHMathSciNetGoogle Scholar
  16. [16]
    Lakeyev, A. V. and Noskov, S. I.Description of the solution set to linear equation with the intervally defined operator and right-hand side. Doklady Akademii Nauk330 (4) (1993), pp. 430–433 (in Russian).Google Scholar
  17. [17]
    Moore, R. E.Methods and applications of interval analysis. SIAM, Philadelphia, 1979.Google Scholar
  18. [18]
    Neumaier, A.Tolerance analysis with interval arithmetic. Freiburger Intervall-Berichte86 (9) (1986), pp. 5–19.Google Scholar
  19. [19]
    Neumaier, A.Interval methods for systems of equations. Cambridge University Press, Cambridge, 1990.Google Scholar
  20. [20]
    Ortega, J. M. and Rheinboldt, W. C.Iterative solutions of nonlinear equations in several variables. Academic Press, New York, 1970.Google Scholar
  21. [21]
    Radström, H.An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc.3 (1952), pp. 165–169.MATHMathSciNetGoogle Scholar
  22. [22]
    Ratschek, H. and Sauer, W.Linear interval equations. Computing28 (1982), pp. 105–115.CrossRefMathSciNetGoogle Scholar
  23. [23]
    Rockafellar, R. T.Convex analysis. Princeton University Press, Princeton, 1970.Google Scholar
  24. [24]
    Rohn, J.NP-hardness results for linear algebraic problems with interval data. In: Herzberger, J. (ed.) “Topics in Validated Computations”, North-Holland, Amsterdam, 1993, pp. 463–471.Google Scholar
  25. [25]
    Shary, S. P.On an interval problem of linear algebra. In: “Informacionno-operativnyi material”, Preprint No 2/1987, Computer Center of Siberian Department of the USSR Academy of Sciences, Krasnoyarsk, 1987, pp. 45–46 (in Russian).Google Scholar
  26. [26]
    Shary, S. P.On controlled solution set of interval algebraic systems. Interval Computations4 (6) (1992), pp. 66–75.MATHMathSciNetGoogle Scholar
  27. [27]
    Shary, S. P.Algebraic approach to some interval problems, or One more application of Kaucher arithmetic. In: “Interval'94 (International Conference on Interval and Computer-Algebraic Methods in Science and Engineering, St.Petersburg, Russia, March 7–10, 1994). Abstracts”, St.Peterburg, 1994, pp. 212–216.Google Scholar
  28. [28]
    Shary, S. P.Solving the tolerance problem for interval linear equations. Interval Computations 2 (1994), pp. 6–26.MathSciNetGoogle Scholar
  29. [29]
    Shary, S. P.On optimal solution of interval linear equations. SIAM J. Numer. Anal.32 (1995), pp. 610–630.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    Zakharov, A. V. and Shokin, Yu. I.Synthesis of the control systems under conditions of interval uncertainty in parameters of their mathematical models. Doklady Akademii Nauk299 (2) (1988), pp. 292–295 (in Russian).MathSciNetGoogle Scholar
  31. [31]
    Zyuzin, V. S.On a way of finding two-sided approximation to the solution of system of linear interval equations. In: “Differential Equations and the Theory of Functions”, Saratov State University, Saratov, 1987, pp. 28–32 (in Russian).Google Scholar
  32. [32]
    Zyuzin, V. S.An iterative method for solving system of algebraic segment equations of the first order. In: “Differential Equations and the Theory of Functions”, Saratov State University, Saratov, 1989, pp. 72–82 (in Russian).Google Scholar
  33. [33]
    Zyuzin, V. S.An interval arithmetic solution of a system of interval algebraic equations of the first order. In: “International Symposium on Computer Arithmetic, Scientific Computation and Mathematical Modelling, Albena, Bulgaria, September 23–28, 1990 (SCAN-90)”, Bulgarian Academy of Sciences, Sofia, 1990, pp. 160–162.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Sergey P. Shary
    • 1
  1. 1.Institute of Computational TechnologiesNovosibirskRussia

Personalised recommendations