Arkiv för Matematik

, 28:333

Compactification of varieties

  • N. Schwartz
Article

References

  1. 1.
    Becker, E., On the real spectrum of a ring and its application to semi-algebraic geometry.Bull. AMS 15, (1986), 19–60.MATHCrossRefGoogle Scholar
  2. 2.
    Bochnak, J., Coste, M., Roy, M. F., Geometrie algebrique reele.Springer Ergebnisberichte Bd. 12, 3. Serie, 1987.MathSciNetGoogle Scholar
  3. 3.
    Bourbaki, N.,Algebre Commutative. Chap. 5, 6. Hermann, Paris 1964.MATHGoogle Scholar
  4. 4.
    Brumfiel, G. W.,Partially Ordered Rings and Semi-Algebraic Gemetry. London Math. Soc. Lecture Note Series, vol. 37.Google Scholar
  5. 5.
    Brumfiel, G. W.,The Morgan-Shalen compactification and boundaries of closed semialgebraic sets. Handwritten Notes.Google Scholar
  6. 6.
    Brumfiel, G. W.,The realspectrum compactification of Teichmüller space. Preprint.Google Scholar
  7. 7.
    Chang, C. C., Keisler, H. J.,Model Theory. North-Holland 1977.Google Scholar
  8. 8.
    Coste, M., Roy, M. F., La topologie du spectre reel. In: Ordered Fields and Real Algebraic Geometry (Ed.: D. W. Dubois, T. Recio),Contemp. Math., vol.8.Google Scholar
  9. 9.
    Cucker, F.,Fonctions de Nash sur les varietes algebriques affines. These, Rennes 1986.Google Scholar
  10. 10.
    Delfs, H., Knebusch, M.,Locally semialgebraic spaces. Springer Lecture Notes in Math., vol.1173.Google Scholar
  11. 11.
    Endler, O.,Valuation Theory. Springer Universitext 1972.Google Scholar
  12. 12.
    Fuchs, L.,Teilweise geordnete algebraische Strukturen. Vandenhoeck & Ruprecht 1966.Google Scholar
  13. 13.
    Hasse, H.,Number Theory. Springer Grundlehren, vol.229.Google Scholar
  14. 14.
    Hochster, M., Prime ideal structure in commutative rings.Transactions AMS 142, (1969) 43–60.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Huber, R.,The complex spectrum of a ring. Preprint.Google Scholar
  16. 16.
    Huber, R.,Bewertungsspektren. Seminar notes.Google Scholar
  17. 17.
    Kaplansky, I., Maximal fields with valuations.Duke Math. J. 9, (1942) 303–321.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Knebusch, M., An invitation to real spectra. In: Quadratic and Hermitian Forms (Ed.: C.R. Rielm, J. Hambleton),Canadian Math. Soc. Conference Proc., vol.4.Google Scholar
  19. 19.
    Knebusch, M.,Weakly semialgebraic spaces. Springer Lecture Notes in Math., vol.1369.Google Scholar
  20. 20.
    Knebusch, M., Scheiderer, C.,Reelle Algebra. In preparation.Google Scholar
  21. 21.
    Lam, T. Y., An introduction to real algebra.Rocky Mountain J. Math. 14, (1984) 767–814.MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Morgan, J. W., Shalen, P. B., Valuations, trees, and degenerations of hyperbolic structures, I.Annals of Math. 120, (1984) 401–476.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Prestel, A.,Lectures on formally real fields. Springer Lecture Notes in Math., vol1093.Google Scholar
  24. 24.
    Prestel, A.,Einführung in die Mathematische Logik und Modelltheorie. Vieweg 1986.Google Scholar
  25. 25.
    Priess-Crampe, S., Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen.Springer Ergebnisberichte, Bd.98, 2. Serie.Google Scholar
  26. 26.
    de la Puente Muñoz, M. J.,Riemann Surfaces of a Ring and Compacifications of Semi-Algebraic Sets. Thesis, Stanford 1988.Google Scholar
  27. 27.
    Ribenboim, P.,Theorie des Valuations. Universite de Montreal 1965.Google Scholar
  28. 28.
    Sacks, G.,Saturated Model Theory. Benjamin Mathematics Lecture Note Series 1972.Google Scholar
  29. 29.
    Schwartz, N.,Real Closed Spaces. Habilitationsschrift, München 1984.Google Scholar
  30. 30.
    Schwartz, N., The Basic Theory of Real Closed Spaces.Memoirs of the AMS, No.397, 1989.Google Scholar
  31. 31.
    Schwartz, N., Eine universelle Eigenschaft reell abgeschlossener Räume. To appear:Comm. Alg. Google Scholar
  32. 32.
    Schwartz, N.,Inverse Real Closed Spaces. Preprint.Google Scholar
  33. 33.
    Thurston, W.,On the geometry and dynamics of diffeomorphisms of surfaces. I. Manuscript.Google Scholar
  34. 34.
    Weiss, E.,Algebraic Number Theory. Chelsea 1963.Google Scholar
  35. 35.
    Zariski, O., Samuel, P.,Commutative Algebra, II. Van Nostrand 1960.Google Scholar

Copyright information

© Institut Mittag-Leffler 1990

Authors and Affiliations

  • N. Schwartz
    • 1
  1. 1.Fakultät für Mathematik und InformatikUniversität PassauPassauBRD

Personalised recommendations