Trace elements and essential oil composition in chemotypes of the aromatic plantOriganum vulgare

  • G. D. Kanias
  • C. Souleles
  • A. Loukis
  • E. Philotheou-Panou
Article

Abstract

Trace elements, essential oil yield and its percentage composition were determined by neutron activation analysis, hydrodistillation and gas chromatography in two chemotypes ofOriganum vulgare L. cultivated in the same field. Statistical tests such as analysis of variance, correlation coefficient,t-test, and multiple correlation were applied. The results showed that the samples contain the highest recorded oil yield for aromatic plants. Also, there is a statistically significant difference between the chemotypes of the plant not only in the predominant compound but in a number of other components. Iron, chromium and scandium showed a negative significant correlation with carvacrol and a positive one with thymol. Europium shows characteristic correlations with chromium, cobalt, iron and scandium within each chemotype of the plant. These correlations could make probable a role of this element in the biosynthesis of the predominant compounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bonner, J. E. Varner, Plant Biochemistry, Academic Press, New York, London, 1975.Google Scholar
  2. 2.
    R. D. Gibbs, Chemotaxonomy of Flowering Plants, Vol. 1, McGill-Queen's University Press, Montreal and London, 1974.Google Scholar
  3. 3.
    I. I. Platash, S. S. Artemchenko, Farm. Zh. (Kiev), 29 (1974) 81.Google Scholar
  4. 4.
    E. Werker, E. Putievsky, U. Ravid, Anals of Botany, 55 (1985) 793.Google Scholar
  5. 5.
    K. H. C. Baser, T. Ozek, G. Tumen, E. Sezik, J. Essent. Oil Res, 5 (1993) 619.Google Scholar
  6. 6.
    S. Kokkini, D. Vokou, Flavour Fragr. J., 4 (1989) 1.Google Scholar
  7. 7.
    S. Kokkini, D. Vokou, Biochem. Systematics and Ecology, 21 (1993) 397.Google Scholar
  8. 8.
    D. Vokou, S. Kokkini, J. M. Bessiere, Economic Botany, 42 (1988) 407.Google Scholar
  9. 9.
    K. H. C. Baser, T. Ozek, M. KurkcuoĢlu, G. Tumen, J. Essent. Oil Res., 6 (1994) 31.Google Scholar
  10. 10.
    E. Sezik, G. Tumen, N. Kirimer, T. Ozek, K. H. C. Baser, J. Essent. Oil Res., 5 (1993) 425.Google Scholar
  11. 11.
    K. H. C. Baser, G. Tumen, E. Sezik, J. Essent. Oil Res., 3 (1991) 445.Google Scholar
  12. 12.
    K. H. C. Baser, T. Ozek, M. KurkcuoĢlu, G. Tumen, J. Essent. Oil Res., 4 (1992) 139.Google Scholar
  13. 13.
    G. Valentini, N. Arnold, B. Bellomaria, H. J. Arnold, J. Ethnopharmacology, 35 (1991) 115.CrossRefGoogle Scholar
  14. 14.
    N. Arnold, B. Bellomaria, G. Valentini, H. J. Arnold, J. Essent. Oil Res., 5 (1993) 71.Google Scholar
  15. 15.
    K. H. C. Baser, N. Kirimer, G. Tumen, J. Essent. Oil Res., 5 (1993) 577.Google Scholar
  16. 16.
    V. K. Kaul, B. Singh, R. P. Sood, J. Essent. Oil Res., 8 (1996) 101.Google Scholar
  17. 17.
    K. H. C. Baser, G. Tumen, H. Duman, J. Essent. Oil Res., 9 (1997) 91.Google Scholar
  18. 18.
    G. D. Kanias, E. Tsitsa, A. Loukis, V. KilikoĢlu, J. Radioanal. Nucl. Chem., 169 (1993) 483.Google Scholar
  19. 19.
    Greek Pharmacopoeia, 3rd ed., 1974, p.1221.Google Scholar
  20. 20.
    A. J. Poulose, R. Croteau, Arch. Biochem. Biophys., 187 (1978) 307.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1998

Authors and Affiliations

  • G. D. Kanias
    • 1
  • C. Souleles
    • 2
  • A. Loukis
    • 3
  • E. Philotheou-Panou
    • 4
  1. 1.Trace Element Analysis Laboratory, Institute of Physical ChemistryNational Centre for Scientific Research “DEMOKRITOS”AthensGreece
  2. 2.Laboratory of PharmacognosyUniversity of ThessalonikiThessalonikiGreece
  3. 3.Division of PharmacognosyUniversity of AthensAthensGreece
  4. 4.Technological Educational Institution of ThessalonikiThessalonikiGreece

Personalised recommendations