Advertisement

Antonie van Leeuwenhoek

, Volume 50, Issue 5–6, pp 545–555 | Cite as

The interaction between electron transfer, proton motive force and solute transport in bacteria

  • W. N. Konings
  • K. J. Hellingwerf
  • M. G. L. Elferink
Biochemistry

Abstract

The properties of proton solute symport have been studied inStreptococcus cremoris, Rhodopseudomonas sphaeroides andEscherichia coli. In the homolactic fermentative organismS. cremoris the efflux of lactate is a membrane proteinmediated process, which can lead to the generation of a proton motive force. These observations support the energy-recycling model that postulates the generation of metabolic energy by end-product efflux. Studies with oxidants and reductants and specific dithiol reagents inE. coli membrane vesicles demonstrated the presence of two redox-sensitive dithiol-disulphide groups in the transport proteins of proline and lactose. The redox state of these groups is controlled by the redox potential of the environment and by the proton motive force. One redox-sensitive group is located at the inner surface, the other at the outer surface of the membrane. InRps. sphaeroides andE. coli the activity of several transport proteins depends on the activity of the electron transfer systems.

On the basis of these results a redox model for proton solute transport coupled in parallel to the electron transfer system is postulated.

Keywords

Lactate Proline Electron Transfer Lactose Metabolic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boos, W. 1974. Bacterial transport. — Annu. Rev. Biochem43: 123–146.PubMedCrossRefGoogle Scholar
  2. Buchanan, B. B., Wolosiuk, R. A. andSchürmann, P. 1979. Thioredoxin and enzyme regulation. — Trends Biochem. Sci.4: 93–96.CrossRefGoogle Scholar
  3. Cohen, G. N. andMonod, J. 1959. Bacterial permeases. — Bacteriol. Rev.21: 169–194.Google Scholar
  4. Elferink, M. G. L., Friedberg, I., Hellingwerf, K. J. andKonings, W. N. 1983a. The role of the proton-motive force and electron flow in light-driven solute transport inRhodopseudomonas sphaeroides. — Eur. J. Biochem.129: 583–587.PubMedGoogle Scholar
  5. Elferink, M. G. L., Hellingwerf, K. J., Nano, F. E., Kaplan, S. andKonings, W. N. 1983b. The lactose carrier ofEscherichia coli functionally incorporated inRhodopseudomonas sphaeroides obeys the regulatory conditions of the phototrophic bacterium. — FEBS Lett.164: 185–190.PubMedCrossRefGoogle Scholar
  6. Elferink, M. G. L., Hellingwerf, K. J., Van Belkum, M. J., Poolman, B. andKonings, W. N. 1984. Direct interaction between linear electron transfer chains and solute transport systems in bacteria. — FEMS Microbiol. Lett.21: 293–298.Google Scholar
  7. Harold, F. M. 1977. Membranes and energy transduction in bacteria. p. 83–149.In D. R. Sanadi (ed.), Current Topics in Bioenergetics, Vol. 6. — Academic Press, New York.Google Scholar
  8. Hellingwerf, K. J. andKonings, W. N. 1984. The energy flow in bacteria: the main free energy intermediates and their regulatory role. — Adv. Microbiol. Physiol. (in press).Google Scholar
  9. Hommes, R. W. J., Postma, P. W., Neijssel, O. M., Tempest, D. W., Dokter, P. andDuine, J. A. 1984. Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains ofEscherichia coli. — FEMS Microbiol. Lett.24: 329–333.Google Scholar
  10. Kaback, H. R. andBarnes, E. M. 1971. Mechanisms of active transport in isolated membrane vesicles II. The mechanism of energy coupling betweend-lactic dehydrogenase and β-galactoside transport in membrane preparations fromEscherichia coli. — J. Biol. Chem.246: 5523–5531.PubMedGoogle Scholar
  11. Kaback, H. R. andMilner, L. S. 1970. Relationship of a membrane-boundd-(-)-lactic dehydrogenase to amino acid transport in isolated bacterial membrane preparations. — Proc. Natl Acad. Sci. USA66: 1008–1015.PubMedGoogle Scholar
  12. Kaczorowski, G. J., Robertson, D. E. andKaback, H. R. 1979. Mechanism of lactose translocation in membrane vesicles fromEscherichia coli. 2. Effect of imposed Δψ, ΔpH, and\(\Delta \bar \mu _H + \). — Biochemistry18: 3697–3704.PubMedGoogle Scholar
  13. Kell, D. B. 1979. On the functional proton current pathway of electron transport phosphorylation. An electrodic review. — Biochim. Biophys. Acta549: 55–99.PubMedGoogle Scholar
  14. Kepes, A. 1970. Galactoside permease ofEscherichia coli. p. 101–134.In F. Bronner and A. Kleinzeller (eds), Current Topics in Membranes and Transport, Vol. 1. — Academic Press, New York.Google Scholar
  15. Konings, W. N., Hellingwerf K. J. andRobillard, G. T. 1981. Transport across bacterial membranes. p. 257–283.In S. L. Bonting and J. J. H. H. M. de Pont (eds), Membrane Transport. — Elsevier/North Holland, Amsterdam.Google Scholar
  16. Konings, W. N. andRobillard, G. T. 1982. Physical mechanism for regulation of proton solute symport inEscherichia coli. — Proc. Natl Acad. Sci. USA79: 5480–5484.PubMedGoogle Scholar
  17. Kundig, W., Ghosh, S. andRoseman, S. 1964. Phosphate bound to histidine in a protein as intermediate in a novel phospho-transferase system. — Proc. Natl Acad. Sci. USA52: 1067–1074.PubMedGoogle Scholar
  18. Lipmann, F. 1941. Metabolic generation and utilization of phosphate bond energy. — Adv. Enzymol.1: 99–162.Google Scholar
  19. Michels, P. A. M., Michels, J. P. J., Boonstra, J. andKonings, W. N. 1979. Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products. — FEMS Microbiol. Lett.5: 357–364.Google Scholar
  20. Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. — Glynn Research Ltd, Bodmin.Google Scholar
  21. Mitchell, P. 1972. Chemiosmotic coupling in energy transduction: a logic development in biochemical knowledge. — Bioenergetics3: 5–24.Google Scholar
  22. Neuhaus, J. M. andWright, J. K. 1983. Chemical modification of the lactose carrier ofEscherichia coli by plumbagin, phenylarsinoxide or diethylpyrocarbonate affects the binding of galactoside. — Eur. J. Biochem.137: 615–621.PubMedCrossRefGoogle Scholar
  23. Otto, R., Hugenholtz, J., Konings, W. N. andVeldkamp, H. 1980a. Increase of molar growth yield ofStreptococcus cremoris for lactose as a consequence of lactate consumption byPseudomonas stutzeri in mixed culture. — FEMS Microbiol. Lett.9: 85–88.Google Scholar
  24. Otto, R., Lageveen, R. G., Veldkamp, H. andKonings, W. N. 1982. Lactate efflux-induced electrical potential in membrane vesicles ofStreptococcus cremoris. — J. Bacteriol.149: 733–738.PubMedGoogle Scholar
  25. Otto, R., Sonnenberg, A. S. M., Veldkamp, H. andKonings, W. N. 1980b. Generation of an electrochemical proton gradient inStreptococcus cremoris by lactate efflux. — Proc. Natl Acad. Sci. USA,77: 5502–5506.PubMedGoogle Scholar
  26. Poolman, B., Konings, W. N. andRobillard, G. T. 1983. The location of redox-sensitive groups in the carrier protein of proline at the outer and inner surface of the membrane inEscherichia coli. — Eur. J. Biochem.135: 41–46.PubMedCrossRefGoogle Scholar
  27. Robillard, G. T. andKonings, W. N. 1981. Physical mechanism for regulation of phosphoenolpyruvate-dependent glucose transport activity inEscherichia coli. — Biochemistry20: 5025–5032.PubMedCrossRefGoogle Scholar
  28. Robillard, G. T. andKonings, W. N. 1982. A hypothesis for the role of dithiol-disulfide interchange in solute transport and energy-transducing processes. — Eur. J. Biochem.127: 597–604.PubMedGoogle Scholar
  29. Ten Brink, B., Hansen, U. P. andKonings, W. N. 1984a. The effect of external pH and lactate concentration on the H+/lactate stoichiometry during lactate excretion from glycolyzingStreptococcus cremoris cells. — J. Bacteriol. (in press).Google Scholar
  30. Ten Brink, B. andKonings, W. N. 1980. Generation of an electrochemical proton gradient by lactate efflux in membrane vesicles ofEscherichia coli. — Eur. J. Biochem.111: 59–66.PubMedGoogle Scholar
  31. Ten Brink, B. andKonings, W. N. 1982. Electrochemical proton gradient and lactate concentration gradient inStreptococcus cremoris cells grown in batch culture. — J. Bacteriol.152: 682–686.PubMedGoogle Scholar
  32. Ten Brink, B., Otto, R. andKonings, W. N. 1984b. The “energy-recycling model” studied in pH-regulated batch and continuous cultures ofStreptococcus cremoris — J. Bacteriol. (in press).Google Scholar
  33. Van Schie, B. J., Hellingwerf, K. J., Van Dijken, J. P., Elferink, M. G. L., Van Dijl, J.M., Kuenen, J. G. andKonings, W. N. 1984. Pyrroloquinoline quinone dependent glucose (aldose) dehydrogenase coupled to a proton motive force generating electron transfer system inEscherichia coli, Pseudomonas aeruginosa andAcinetobacter calcoaceticus. — J. Bacteriol. (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 1984

Authors and Affiliations

  • W. N. Konings
    • 1
  • K. J. Hellingwerf
    • 1
  • M. G. L. Elferink
    • 1
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands

Personalised recommendations