Antonie van Leeuwenhoek

, Volume 50, Issue 5–6, pp 433–460 | Cite as

Bacterial anatomy in retrospect and prospect

  • N. Nanninga
  • G. J. Brakenhoff
  • M. Meijer
  • C. L. Woldringh
Development And Structure

Abstract

Progress in bacterial anatomy over a period of about 15 years is reviewed. In particular, attention is paid to developments in which the Department of Electron Microscopy and Molecular Cytology was involved. Past and present problems in bacterial anatomy as well as approaches to their solution are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Begg, K. J. andDonachie, W. D. 1977. Growth of theEscherichia coli cell surface. — J. Bacteriol.129: 1524–1536.PubMedGoogle Scholar
  2. Boublik, M. 1985. Ribosome structure. p. 229–258.In N. Nanninga (ed.), Molecular Cytology ofEscherichia coli. — Academic Press Inc., New York.Google Scholar
  3. Brakenhoff, G. J. 1979. Imaging modes in confocal scanning light microscopy (CSLM). — J. Microsc.117: 223–242.Google Scholar
  4. Brakenhoff, G. J., Blom, P. andBarends, P. 1979. Confocal scanning light microscopy with high aperture immersion lenses. — J. Microsc.117: 219–232.Google Scholar
  5. Brakenhoff, G. J., Nanninga, N. andPieters, J. 1972. Relative mass determination from darkfield electron micrographs with an application to ribosomes. — J. Ultrastruct. Res.41: 238–257.PubMedCrossRefGoogle Scholar
  6. Branton, D. 1966. Fracture faces of frozen membranes. — Proc. Natl Acad. Sci. USA55: 1048–1056.PubMedGoogle Scholar
  7. Burdett, I. D. J. andMurray, R. G. L. 1974. Septum formation inEscherichia coli: characterization of septal structure and the effects of antibiotics on cell division. — J. Bacteriol.119: 303–324.PubMedGoogle Scholar
  8. Burdett, I. D. J. andRogers, H. J. 1970. Modification of the appearance of mesosomes in sections ofBacillus licheniformis according to the fixation procedures. — J. Ultrastruct. Res.30: 354–367.PubMedCrossRefGoogle Scholar
  9. Burman, L. G., Raichler, J. andPark, J. T. 1983. Evidence for diffuse growth of the cylindrical portion of theEscherichia coli murein sacculus. — J. Bacteriol.155: 983–988.PubMedGoogle Scholar
  10. Chapman, G. B. andHillier, J. 1953. Electron microscopy of ultra-thin sections of bacteria I. Cellular division inBacillus cereus. — J. Bacteriol.66: 362–373.PubMedGoogle Scholar
  11. Cooper, S. andHelmstetter, C. E. 1968. Chromosome replication and the division cycle ofEscherichia coli B/r. — J. Mol. Biol.31: 519–540.PubMedCrossRefGoogle Scholar
  12. Cox, I. J., Sheppard, C. J. R. andWilson, T. 1982. Super-resolution by confocal fluorescent microscopy. — Optik (Stuttgart)60: 391–396.Google Scholar
  13. Daneo-Moore, L., Dicker, D. andHiggins, M. L. 1980. Structure of the nucleoid in cells ofStreptococcus faecalis. — J. Bacteriol.141: 928–937.PubMedGoogle Scholar
  14. Edelstein, E., Parks, L., Tsien, H.-C., Daneo-Moore, L. andHiggins, M. L. 1981. Nucleoid structure in freeze fractures ofStreptococcus faecalis: effects of filtration and chilling. — J. Bacteriol.146: 798–803.PubMedGoogle Scholar
  15. Fitz-James, P. C. 1960. Participation of the cytoplasmic membrane in the growth and spore formation of bacilli. — J. Biophys. Biochem. Cytol.8: 507–528.PubMedGoogle Scholar
  16. Giesbrecht, P. 1960. Über organisierte Mitochondrien und andere Feinstrukturen vonBacillus megaterium. — Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1: Orig.179: 538–548.Google Scholar
  17. Grond, C. J., Derksen, J. andBrakenhoff, G. J. 1982. The banding pattern of the segment 46A-48C inDrosophila hydeï polytene chromosomes as studied by confocal scanning light microsopy (CSLM). — J. Microsc.114: 179–197.Google Scholar
  18. Helmstetter, C. E. andCooper, S. 1968. DNA synthesis during the division cycle of rapidly growingEscherichia coli B/r. — J. Mol. Biol.31: 507–518.PubMedCrossRefGoogle Scholar
  19. Higgins, M. L. andDaneo-Moore, L. 1974. Factors influencing the frequency of mesosomes observed in fixed and unfixed cells ofStreptococcus faecalis. — J. Cell Biol.61: 288–300.PubMedCrossRefGoogle Scholar
  20. Higgins, M. L., Tsien, H. C. andDaneo-Moore, L. 1976. Organization of mesosomes in fixed and unfixed cells. — J. Bacteriol.127: 1519–1523.PubMedGoogle Scholar
  21. Höltje, J. V. andSchwarz, U. 1985. Structure and biosynthesis of the murein layer. p. 77–119.In N. Nanninga (ed.), Molecular Cytology ofEscherichia coli. — Academic Press Inc., New York.Google Scholar
  22. Ingraham, J. L., Maaloe, O. andNeidhardt, F. C. 1983. Growth of the Bacterial Cell. — Sinauer Associates, Inc., Sunderland.Google Scholar
  23. Kellenberger, E. andRyter, A. 1964. In Bacteriology. p. 335–393.In B. M. Siegel (ed.). Modern Developments in Electron Microscopy. — Academic Press Inc., New York.Google Scholar
  24. Kleemann, W. andMcConnell, H. M. 1974. Lateral phase separations inEscherichia coli membranes. — Biochim. Biophys. Acta345: 220–230.PubMedGoogle Scholar
  25. Koch, A. L. 1984. How bacteria get their shapes: the surface stress theory. — Comments Mol. Cell. Biophys.2: 179–196.Google Scholar
  26. Koga, Y. andKusaka, I. 1970. Involvement of intracellular phospholipase C in autolytic fragmentation of cytoplasmic membranes ofBacillus cereus. — Eur. J. Biochem.16: 407–413.PubMedCrossRefGoogle Scholar
  27. Koppes, L. J. H., Meijer, M., Oonk, H. B., De Jong, M. A. andNanninga, N. 1980. Correlation between size and age at different events in the cell division cycle ofEscherichia coli. — J. Bacteriol.143: 1241–1252.PubMedGoogle Scholar
  28. Koppes, L. J. H. andNanninga, N. 1980. Positive correlation between size at initiation of chromosome replication inEscherichia coli and size at initiation of cell constriction. — J. Bacteriol.143: 89–99.PubMedGoogle Scholar
  29. Koppes, L. J. H., Overbeeke, N. andNanninga, N. 1978a. DNA replication pattern and cell wall growth inEscherichia coli PAT 84. — J. Bacteriol.133: 1053–1061.PubMedGoogle Scholar
  30. Koppes, L. J. H., Woldringh, C. L. andNanninga, N. 1978b. Size variations and correlation of different cell cycle events in slow-growingEscherichia coli. — J. Bacteriol.134: 423–433.PubMedGoogle Scholar
  31. Kusaka, I. 1975. Degradation of phospholipid and release of diglyceride-rich membrane vesicles during protoplast formation in certain gram-positive bacteria. — J. Bacteriol.121: 1173–1179.PubMedGoogle Scholar
  32. Lickfeld, K. G. 1968. Der frostgeätzte Bakterienkern. Ein Beitrag zur Klärung seiner Tertiärstruktur. — Z. Zellforsch. Mikroskop. Anat.88: 560–564.CrossRefGoogle Scholar
  33. Lickfeld, K. G. andAchterrath, M. 1972. Polymorphismus desStaphylococcus aureus — Mesosoms. — Cytobiologie Z. Exp. Zellforsch.6: 74–85.Google Scholar
  34. Lugtenberg, B. andVan Alphen, L. 1983. Molecular architecture and functioning of the outer membrane ofEscherichia coli and other gram-negative bacteria. — Biochim. Biophys. Acta737: 51–115.PubMedGoogle Scholar
  35. Maaloe, O. andKjeldgaard, N. O. 1966. Control of Macromolecular Synthesis. — Benjamin, New York.Google Scholar
  36. Meijer, H. W. andWinkelmann, H. 1960. Die Gefrierätzung und die Struktur biologischer Membranen. — Protoplasma68: 253–270.Google Scholar
  37. Meijer, M., Beck, E., Hansen, F. G., Bergmans, H. E. N., Messer, W., Von Meyenburg, K. andSchaller, H. 1979. Nucleotide sequence of the origin of replication of theEscherichia coli K-12 chromosome. — Proc. Natl Acad. Sci. USA76: 580–584.PubMedGoogle Scholar
  38. Meijer, M., De Jong, M. A., Woldringh, C. L. andNanninga, N. 1976a. Factors affecting the release of folded chromosomes fromEscherichia coli. — Eur. J. Biochem.63: 469–475.Google Scholar
  39. Meijer, M., De Jong, M. A., Woldringh, C. L. andNanninga, N. 1976b. Significance of folded chromosomes released from amino-acid-starvedEscherichia coli cells. — Eur. J. Biochem.65: 409–414.Google Scholar
  40. Miller Jr, O. L., Hamkalo, B. A. andThomas Jr, C. A. 1970. Visualization of bacterial genes in action. — Science169: 392–395.PubMedGoogle Scholar
  41. Minkoff, L. andDamadian, R. 1976. Actin-like proteins fromEscherichia coli: concept of cytotonus as the missing link between cell metabolism and the biological ion-exchange resin. — J. Bacteriol.125: 353–365.PubMedGoogle Scholar
  42. Mizushima, S. 1985. Structure and assembly of the outer membrane. p. 39–75.In N. Nanninga (ed.), Molecular Cytology ofEscherichia coli. — Academic Press Inc., New York.Google Scholar
  43. Moor, H. andMühlethaler, K. 1963. Fine structure in frozen-etched yeast cells. — J. Cell Biol.17: 609–628.CrossRefGoogle Scholar
  44. Moor, H., Mühlethaler, K., Waldner, H. andFrey-Wyssling, A. 1961. A new freezing-ultramicrotome. — J. Biophys. Biochem. Cytol.10: 1–10.PubMedGoogle Scholar
  45. Murray, R. G. E. 1960. The internal structure of the cell. p. 35–96.In I. C. Gunsalus and R. Y. Stanier (eds), The Bacteria, Vol. 1. — Academic Press, New York.Google Scholar
  46. Murray, R. G. E. 1963. p. 28.In D. Mazia and A. Tyler (eds), General Physiology of Cell Specialization. — McGraw Hill Book Co., Inc., New York.Google Scholar
  47. Nanninga, N. 1968. Structural features of mesosomes (chondrioids) ofBacillus subtilis after freeze-etching. — J. Cell Biol.39: 251–263.PubMedCrossRefGoogle Scholar
  48. Nanninga, N. 1969. Preservation of the ultrastructure ofBacillus subtilis by chemical fixation as verified by freeze-etching. — J. Cell Biol.42: 733–744.PubMedCrossRefGoogle Scholar
  49. Nanninga, N. 1970a. Mesosome induction by chemical fixation as verified by freeze-fracturing. p. 349–350.In P. Favard (ed.), Seventh Int. Congr. Electron Microsc., Grenoble, Vol.3. — Soc. Fr. Microsc. Electron., Paris.Google Scholar
  50. Nanninga, N. 1970b. Ultrastructure of the cell envelope ofEscherichia coli B after freeze-etching. — J. Bacteriol.101: 297–303.PubMedGoogle Scholar
  51. Nanninga, N. 1971a. The mesosome ofBacillus subtilis as affected by chemical and physical fixation. — J. Cell Biol.48: 219–224.PubMedCrossRefGoogle Scholar
  52. Nanninga, N. 1971b. Uniqueness and location of the fracture plane in the plasma membrane ofBacillus subtilis. — J. Cell Biol.49: 564–570.CrossRefGoogle Scholar
  53. Nanninga, N. 1973. Structural aspects of ribosomes. — Int. Rev. Cytol.35: 135–188.PubMedGoogle Scholar
  54. Nanninga, N. 1975. Mesosomal cytology. p. 527–538.In T. Hasegawa (ed.) Proc. First Intersect. Congr. IAMS, Vol. 1. — Science Council of Japan.Google Scholar
  55. Nanninga, N., Garrett, R. A., Stöffler, G. andKlotz, G. 1972a. Ribosomal proteins. XXXVIII. Electron microscopy of ribosomal protein S4-16S RNA complexes ofEscherichia coli. — Mol. Gen. Genet.119: 175–184.PubMedCrossRefGoogle Scholar
  56. Nanninga, N., Pieters, J. andElbers, P. F. 1972b. Dimensions of 50S ribosomal subunits with special reference to darkfield electron microscopy. — Cytobiologie Z. Exp. Zellforsch.6: 391–402.Google Scholar
  57. Nanninga, N. andWoldringh, C. L. 1981. The interpretation of chemically fixed and freeze-fractured bacterial nucleoplasm. — Acta Histochem.23: 39–53.Google Scholar
  58. Nanninga, N. andWoldringh, C. L. 1985. Cell growth, genome duplication and cell division. p. 259–318.In N. Nanninga (ed.), Molecular Cytology ofEscherichia coli. — Academic Press Inc., New York.Google Scholar
  59. Nanninga, N., Woldringh, C. L. andKoppes, L. J. H. 1982. Growth and division ofEscherichia coli. p. 225–270.In C. Nicolini (ed.), Cell Growth. — Plenum Publ. Corp., New York.Google Scholar
  60. Newman, C. N. andKubitschek, H. E. 1978. Variation in periodic replication of the chromosome inEscherichia coli B/rTT. — J. Mol. Biol.121: 461–471.PubMedCrossRefGoogle Scholar
  61. Pettijohn, D. E. andSinden, R. R. 1985. Structure of the isolated nucleoid. p. 199–227.In N. Nanninga (ed.), Molecular Cytology ofEscherichia coli. — Academic Press Inc., New York.Google Scholar
  62. Pinto da Silva, P. andBranton, D. 1970. Membrane splitting in freeze-etching. Covalently bound ferritin as a membrane marker. — J. Cell Biol.45: 598–605.PubMedGoogle Scholar
  63. Remsen, C. C. 1968. Fine structure of the mesosome and nucleoid in frozen-etchedBacillus subtilis. — Arch. Mikrobiol.61: 40–47.PubMedCrossRefGoogle Scholar
  64. Robinow, C. F. 1960. Outline of the visible organization of bacteria. p. 45–108.In J. Brachet and A. E. Mirsky (eds), The Cell, Vol. 4. — Academic Press Inc., New York.Google Scholar
  65. Rosenbusch, J. P., Jacobson, G. R. andJaton, J. C. 1976. Does a bacterial elongation factor share a common evolutionary ancestor with actin? — J. Supramol. Struct.5: 391–396.PubMedCrossRefGoogle Scholar
  66. Ryter, A., Hirota, Y. andSchwarz, U. 1973. Process of cellular division inEscherichia coli. Growth pattern ofE. coli murein. — J. Mol. Biol.78: 185–195.PubMedCrossRefGoogle Scholar
  67. Ryter, A. andKellenberger, E. 1958. Etude au microscope électronique de plasma contenant de l’acide désoxyribonucléique. I. Les nucléotides des bactéries en croissance active. — Z. Naturforsch.13B: 597–605.Google Scholar
  68. Ryter, A., Shuman, H. andSchwartz, M. 1975. Integration of the receptor for bacteriophage lambda in the outer membrane ofEscherichia coli: coupling with cell division. — J. Bacteriol.122: 295–301.PubMedGoogle Scholar
  69. Sabatini, D. D., Bensch, K. andBarrnett, R. J. 1963. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. — J. Cell Biol.17: 19–58.PubMedCrossRefGoogle Scholar
  70. Schwarz, U., Asmus, A. andFrank, H. 1969. Autolytic enzymes and cell division ofEscherichia coli. — J. Mol. Biol.41: 419–429.PubMedCrossRefGoogle Scholar
  71. Schwarz, U., Ryter, A., Rambach, A., Hellio, R. andHirota, Y. 1975. Process of cellular division inEscherichia coli: differentiation of growth zones in the sacculus. — J. Mol. Biol.98: 749–760.PubMedGoogle Scholar
  72. Sheppard, C. J. R. andWilson, T. 1978. The theory of scanning microscopes with Gaussian pupil functions. — J. Microsc.114: 179–197.Google Scholar
  73. Silva, M. T. 1971. Changes induced in the ulstrastructure of the cytoplasmic and intracytoplasmic membranes of several Gram-positive bacteria by variations in OsO4 fixation. — J. Microsc.93: 227–232.PubMedGoogle Scholar
  74. Smit, J. andNikaido, H. 1978. Outer membrane of gram-negative bacteria XVIII. Electron microscopic studies on porin insertion sites and growth of cell surface ofSalmonella typhimurium. — J. Bacteriol.135: 687–702.PubMedGoogle Scholar
  75. Staugaard, P., Van den Berg, F. M., Woldringh, C. L. andNanninga, N. 1976. Localization of ampicillin-sensitive sites inEscherichia coli by electron microscopy. — J. Bacteriol.127: 1376–1381.PubMedGoogle Scholar
  76. Steere, L. 1957. Electron microscopy of structural detail in frozen biological specimens. — J. Biophys. Biochem. Cytol.3: 45–60.PubMedGoogle Scholar
  77. Stonington, O. G. andPettijohn, D. E. 1971. The folded genome ofEscherichia coli isolated in a protein-DNA-RNA complex. — Proc. Natl Acad. Sci. USA68: 6–9.PubMedGoogle Scholar
  78. Stuitje, A. R. andMeijer, M. 1983a. Maintenance and incompatibility of plasmids carrying the replication origin of theEscherichia coli chromosome: evidence for a control region of replication betweenoriC andasnA. — Nucleic Acids Res.11: 5775–5791.PubMedGoogle Scholar
  79. Stuitje, A. R. andMeijer, M. 1983b. Isolation and characterization of plasmids carrying a partially defectiveEscherichia coli replication origin. — Nucleic Acids Res.11: 8007–8018.PubMedGoogle Scholar
  80. Tillack, T. W. andMarchesi, V. T. 1970. Demonstration of the outer surface of freeze-etched red blood cell membranes. — J. Cell Biol.45: 649–653.PubMedCrossRefGoogle Scholar
  81. Traub, P. andNomura, M. 1968. Structure and function ofE. coli ribosomes, V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. — Proc. Natl Acad. Sci. USA59: 777–784.PubMedGoogle Scholar
  82. Valkenburg, J. A. C. andWoldringh, C. L. 1985. Phase separation between nucleoid and cytoplasm inEscherichia coli as defined by immersive refractometry. — J. Bacteriol. (in press).Google Scholar
  83. Van Gool, A. P. andNanninga, N. 1971. Fracture faces in the cell envelope ofEscherichia coli. — J. Bacteriol.108: 474–481.PubMedGoogle Scholar
  84. Van Iterson, W. 1961. Some features of a remarkable organelle inBacillus subtilis. — J. Biophys. Biochem. Cytol.9: 183–192.Google Scholar
  85. Van Iterson, W. 1965. Bacterial cytoplasm. — Bacteriol. Rev.29: 299–325.PubMedGoogle Scholar
  86. Van Iterson, W. 1966. The fine structure of the ribonucleoprotein in bacterial cytoplasm. — J. Cell Biol.28: 563–570.PubMedGoogle Scholar
  87. Verwer, R. W. H., Beachey, E. H., Keck, W., Stoub, A. M. andPoldermans, J. E. 1980. Oriented fragmentation ofEscherichia coli sacculi by sonication. — J. Bacteriol.141: 327–332.PubMedGoogle Scholar
  88. Verwer, R. W. H. andNanninga, N. 1980. Pattern ofmeso-Dl-2,6-diaminopimelic acid incorporation during the division cycle ofEscherichia coli. — J. Bacteriol.144: 327–336.PubMedGoogle Scholar
  89. Verwer, R. W. H., Nanninga, N., Keck, W. andSchwarz, U. 1978. Arrangement of glycan chains in the sacculus ofEscherichia coli. — J. Bacteriol.136: 723–729.PubMedGoogle Scholar
  90. Vos-Scheperkeuter, G. H., Pas, E., Brakenhoff, G. J., Nanninga, N. andWitholt, B. 1984. Topography of the insertion of LamB protein into the outer membrane ofEscherichia coli wild-type andlac-lamB cells. — J. Bacteriol.159: 440–447.PubMedGoogle Scholar
  91. Wabl, M. R. 1974. Electron microscopic localization of two proteins on the surface of the 50 S ribosomal subunit ofEscherichia coli using specific antibody markers. — J. Mol. Biol.84: 241–247.PubMedCrossRefGoogle Scholar
  92. Wabl, M. R., Barends, P. J. andNanninga, N. 1973. Tilting experiments with negatively stainedE. coli ribosomal subunits. An electron microscopic study. — Cytobiologie Z. Exp. Zellforsch.7: 1–9.Google Scholar
  93. Weidel, W. andPelzer, H. 1964. Bagshaped macromolecules — a new outlook on bacterial cell walls. — Adv. Enzymol.26: 193–232.PubMedGoogle Scholar
  94. Woldringh, C. L. 1973. Effect of cations on the organization of the nucleoplasm inEscherichia coli prefixed with osmium tetroxide or glutaraldehyde. — Cytobiologie Z. Exp. Zellforsch.8: 97–111.Google Scholar
  95. Woldringh, C. L. 1976. Morphological analysis of nuclear septation and cell division during the life cycle ofEscherichia coli. — J. Bacteriol.125: 248–257.PubMedGoogle Scholar
  96. Woldringh, C. L. andNanninga, N. 1976. Organization of the nucleoplasm inEscherichia coli visualized by phase-contrast light microscopy, freeze fracturing, and thin sectioning. — J. Bacteriol.127: 1455–1464.PubMedGoogle Scholar
  97. Woldringh, C. L. andNanninga, N. 1985. Structure of nucleoid and cytoplasm in the intact cell. p. 161–197.In N. Nanninga (ed.), Molecular Cytology ofEscherichia coli. — Academic Press Inc., New York.Google Scholar
  98. Worcel, A. andBurgi, E. 1972. On the structure of the folded chromosome ofEscherichia coli. — J. Mol. Biol.71: 127–147.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1984

Authors and Affiliations

  • N. Nanninga
    • 1
  • G. J. Brakenhoff
    • 1
  • M. Meijer
    • 1
  • C. L. Woldringh
    • 1
  1. 1.Department of Electron Microscopy and Molecular CytologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations