Advertisement

Arkiv för Matematik

, Volume 26, Issue 1–2, pp 13–20 | Cite as

On the frequency of Titchmarsh’s phenomenon for ζ(s)-V

  • R. Balasubramanian
  • K. Ramachandra
Article
  • 31 Downloads

Keywords

Disjoint Interval Quadratic Field Abelian Extension Prime Number Theorem Arbitrary Positive Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balasubramanian, R., On the frequency of Tichmarsh’s phenomenon for ζ(s)-IV, (to appear).Google Scholar
  2. 2.
    Balasubramanian, R. andRamachandra, K., On the frequency of Titchmarsh’s phenomenon for ζ(s)-III,Proc. Indian Acad. Sci. Section A,86 (1977), 341–351.zbMATHMathSciNetGoogle Scholar
  3. 3.
    Balasubramanian, R. andRamachandra, K., On the zeros of a class of generalized Dirichlet series-III,J. Indian Math. Soc.,41 (1977), 301–315.zbMATHMathSciNetGoogle Scholar
  4. 4.
    Montgomery, H. L., Extreme values of the Riemann zeta-function,Comment. Math. Helv.,52 (1977), 511–518.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Montgomery, H. L., On a question of Ramachandra,Hardy-Ramanujan J.,5 (1982), 31–36.zbMATHMathSciNetGoogle Scholar
  6. 6.
    Ramachandra, K., On the frequency of Titcharsh’s phenomenon for ζ(s)-I,J. London Math. Soc. (2),8 (1974), 683–690.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ramachandra, K., On the frequency of Titchmarsh’s phenomenon for ζ(s)-II,Acta Math. Acad. Sci. Hungarica,30/1–2 (1977), 7–13.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ramachandra, K.,Mean-value of the Riemann zeta-function and other remarks-I, Colloq. Math. Soc. János Bolyai, 34, Topics in classical number theory, Budapest (Hungary), (1981), 1317–1347.Google Scholar

Copyright information

© Institut Mittag-Leffler 1988

Authors and Affiliations

  • R. Balasubramanian
    • 1
  • K. Ramachandra
    • 1
  1. 1.School of MathematicsTata Institute of Fundamental ResearchBombayIndia

Personalised recommendations