Arkiv för Matematik

, Volume 14, Issue 1–2, pp 155–177 | Cite as

Excursions in Brownian motion

  • Kai Lai Chung


Markov Chain Brownian Motion Boundary Theory Occupation Time Entrance Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chung, K. L.,Markov Chains with Stationary Transition Probabilities, second edition, Springer-Verlag, 1967.Google Scholar
  2. 2.
    Chung, K. L., On the boundary theory for Markov chains II,Acta Math. 115 (1966), 111–163.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chung, K. L.,Lectures on Boundary Theory for Markov Chains, Princeton University Press 1970.Google Scholar
  4. 4.
    Chung, K. L., Maxima in Brownian excursions,Bull. Amer. Math. Soc. 81 (1975), 742–745.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 4a.
    Chung, K. L., A bivariate distribution in regeneration.J. Appl. Prob. 12 (1975), 837–839.zbMATHCrossRefGoogle Scholar
  6. 4b.
    Chung, K. L. andDurrett, R., Downcrossings and local time. To appear inZeitschrift für Wahrscheinlichkeitstheorie.Google Scholar
  7. 5.
    Durrett, R. T. andIglehart, D. L., Functionals of Brownian meandering and Brownian excursion.To appear.Google Scholar
  8. 6.
    Freedman, D.,Brownian Motion and Diffusion, Holden-Day 1971.Google Scholar
  9. 7.
    Iglehart, D. L., Functional central limit theorems for random walks conditioned to stay positive,Ann. Probability 2 (1974), 608–619.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 8.
    Ito, K. andMcKean, jr. H. P.,Diffusion Processes and Their Sample Paths, Springer-Verlag, 1965.Google Scholar
  11. 9.
    Kaigh, W. D., An invariance principle for random walk conditioned by a late return to zero.To appear in Ann. of Probability.Google Scholar
  12. 10.
    Lévy, Paul, Sur certains processus stochastiques homogènes,Compositio Math. 7 (1939), 283–339.zbMATHMathSciNetGoogle Scholar
  13. 11.
    Lévy, Paul,Processus stochastiques et mouvement brownien, second edition, Gauthier-Villars 1965 (first ed. 1948).Google Scholar
  14. 12.
    Pólya, G. andSzego″, G.,Aufgaben der Lehrsätze aus der Analysis, Springer-Verlag 1925.Google Scholar
  15. 13.
    Williams, D., The Ito excursion law for Brownian motion.To appear.Google Scholar

Copyright information

© Institut Mittag-Leffler 1976

Authors and Affiliations

  • Kai Lai Chung
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations