Journal of Materials Science

, Volume 24, Issue 8, pp 2697–2703 | Cite as

Wetting improvement of carbon or silicon carbide by aluminium alloys based on a K2ZrF6 surface treatment: application to composite material casting

  • J. P. Rocher
  • J. M. Quenisset
  • R. Naslain


A surface treatment with aqueous solutions of K2ZrF6 has been carried out to improve, in dramatic manner, the wetting of carbon (or SiC)-base ceramics by liquid light alloys at low temperatures (i.e. within the 700 to 900°C range). The mechanism which is thought to be responsible for the wetting improvement involves two steps: (i) K2ZrF6 reacts with aluminium with the formation of K3AlF6, other complex fluoride species and intermetallics, (ii) K3AlF6 dissolves the alumina thin layer, coating the liquid light alloy and enables the wetting of the ceramics. The mechanism has been worked out from sessile drop experiments, solid state chemistry experiments and composite casting. The K2ZrF6 surface treatment appears to be particularly suitable for processing composite materials made of carbon (or SiC) fibrous preforms and aluminium-base matrices according to techniques directly derived from the light alloy foundry.


Carbide Composite Material Aluminium Alloy Silicon Carbide Sessile Drop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. NASLAIN, R. PAILLER and J. M. QUENISSET, in “Introduction to Composite Materials”, Vol. 2 “Metallic and Ceramic Matrices”, edited by R. Naslain, (CNRS/IMC, Bordeaux, 1985). Ch. 15, pp. 319–83.Google Scholar
  2. 2.
    G. BLANKENBURGS,J. Austral. Inst. Metals 14 (1969) 236.Google Scholar
  3. 3.
    S. KOHARA, in “Proceedings of Japan-US Conference on Composite Materials”, Tokyo, 1981, edited by K. Kawata and R. Akasaka (Japan Society for Composite Materials, Tokyo, 1981) p. 224.Google Scholar
  4. 4.
    H. FUKUNAGA and T. ONDE, in “Proceedings of the Fourth International Conference on Composite Materials”, edited by T. Higashi, T. Hayashi, K. Kawata and S. Umekawa, (Japan Society for Composite Materials, Tokyo, 1982) p. 1435.Google Scholar
  5. 5.
    F. GIROT, L. ALBINGRE, J. M. QUENISSET and R. NASLAIN, in “Proceedings of the 5èmes Journées Nationales sur les Composites”, Paris, September 1986, to be published.Google Scholar
  6. 6.
    J. P. ROCHER, F. GIROT, J. M. QUENISSET, R. PAILLER and R. NASLAIN,Mém. Sci. Rev. Métall. February (1986) 69.Google Scholar
  7. 7.
    J. P. ROCHER, J. M. QUENISSET and R. NASLAIN,J. Mater. Sci. Lett. 4 (1985) 1527.CrossRefGoogle Scholar
  8. 8.
    N. EUSTATHOPOULOS, J. C. JOUD, P. DESRE and J. M. HICTER,J. Mater. Sci. 9 (1974) 1233.CrossRefGoogle Scholar
  9. 9.
    L. COUDURIER, J. ADORIAN, D. PIQUE and N. EUSTATHOPOULOS,Rev. Int. Hautes Temp. Réfract. 21 (1984) 81.Google Scholar
  10. 10.
    S. KAYE,J. Vac. Sci. Technol. 11 (1974) 1114.CrossRefGoogle Scholar
  11. 11.
    C. QUENISSET, R. NASLAIN, P. DEMONCY,Surface and Interface Analysis, Vol. 13 (1988) 123.Google Scholar
  12. 12.
    M. G. NICHOLAS and D. A. MORTIMER, in International Conference on Carbon Fibres, Their Composite Applications (Plastics Institute, London, 1971) Paper no. 11, p. 129.Google Scholar
  13. 13.
    W. KOHLER,Aluminium 51 (1975) 443.Google Scholar
  14. 14.
    H. LUNDIN, U.S. Pat. 2686 354, October 1949.Google Scholar
  15. 15.
    N. A. BUSHE and M. E. SEMENOV,Liteinoe Proizv 2 (1962) 15.Google Scholar
  16. 16.
    A. I. LAINER, M. A. KOLENKOVA and Ya. K. BERENT, —ibid. 5 (1959) 30.Google Scholar
  17. 17.
    Idem,,Izvest. Vysshikh Ucheb. Zavedenii, Tsvetnaya Met.2 (1959) 91.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • J. P. Rocher
    • 1
  • J. M. Quenisset
    • 1
  • R. Naslain
    • 1
  1. 1.Laboratoire de Chimie du Solide du CNRSUniversité de Bordeaux-1Talence CédexFrance

Personalised recommendations