Advertisement

Journal of Materials Science

, Volume 24, Issue 6, pp 2099–2109 | Cite as

The effects of contact conditions on impact tests on plastics

  • N. J. Mills
  • P. S. Zhang
Article

Abstract

The causes of the force oscillations observed in instrumented impact tests were investigated. Vibrational modes are excited in cantilever-beam specimens by the initial contact between the striker and the specimen. Although a one-dimensional mass and spring model can predict the oscillations qualitatively, the predicted forces are too large by a factor of two for slender cantilever beams, but approximately correct for lower aspect ratio beams. Computer models can predict the whole of the force deflection curve, but no one-dimensional model can realistically model all the details of the vibrations of a beam specimen. One effective way of reducing the oscillations was to introduce a high hysteresis rubber between the striker and specimen. This was found to produce more meaningful force-deflection or stress-strain curves for polystyrene, without changing the values of the failure stress.

Keywords

Cantilever Beam Impact Test Failure Stress Force Oscillation Beam Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CEAST booklet, “Advanced Fractoscope System MK 3”, 1986, Torino, Italy.Google Scholar
  2. 2.
    ICI Australia Operations Ltd., booklet, “ICITACS Instrumented Impact Tester”, 1986.Google Scholar
  3. 3.
    J. G. WILLIAMS and M. W. BIRCH, “Fracture 1977”, ICF 4 Conference, Waterloo, Canada, Vol. 1, p. 501.Google Scholar
  4. 4.
    J. G. WILLIAMS and G. C. ADAMS,Int. J. Fracture 33 (1987) 209.Google Scholar
  5. 5.
    J. S. MOOIJ,Polymer Testing (1981) 69.Google Scholar
  6. 6.
    P. J. HINE, R. A. DUCKETT and I. M. WARD,J. Mater. Sci. 21 (1986) 2049.CrossRefGoogle Scholar
  7. 7.
    A. J. KINLOCH, G. A. GODOKIAN and M. B. JAMARANI,22 (1987) 4111.CrossRefGoogle Scholar
  8. 8.
    A. GALE and N. J. MILLS,Plastics and Rubber Proc. Appl. 5 (1985) 101.Google Scholar
  9. 9.
    A. GILCHRIST and N. J. MILLS,J. Occupational Accidents 9 (1987) 199.Google Scholar
  10. 10.
    K. W. HILLIER,Proc. Phys. Soc. B 64 (1951) 998.CrossRefGoogle Scholar
  11. 11.
    I. M. WARD, “Mechanical Properties of Solid Polymers’ (Wiley, London, 1971) p. 123.Google Scholar
  12. 12.
    G. C. ADAMS and T. K. WU, in “Fracture of Plastics”, edited by W. Brostow and R. D. Corneliussen (Hanser, Munich, 1986) Ch. 8.Google Scholar
  13. 13.
    J. G. WILLIAMS, “Fracture Mechanics of Polymers” (Ellis Horwood, Chichester, 1984) p. 238.Google Scholar
  14. 14.
    ,Int. J. Fracture 33 (1987) 47.Google Scholar
  15. 15.
    N. J. MILLS, “Plastics” (Edward Arnold, London, 1986).Google Scholar
  16. 16.
    J. F. KALTHOFF,Int. J. Fracture 27 (1985) 277.CrossRefGoogle Scholar
  17. 17.
    T. CHAN, A. M. DONALD and E. J. KRAMER,J. Mater. Sci. 16 (1981) 676.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • N. J. Mills
    • 1
  • P. S. Zhang
    • 2
  1. 1.Department of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK
  2. 2.The Research Institute for Strength of MetalsXían Jiatong UniversityXíanChina

Personalised recommendations