Arkiv för Matematik

, Volume 19, Issue 1–2, pp 271–289

On approximation by translates and related problems in function theory

  • Birger Faxén


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlfors, L., Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen,Acta Soc. Sci. Fenn. N.S. 1. No.9 (1930).Google Scholar
  2. 2.
    Beurling, A., Analytic continuation across a linear boundary.Acta Math. 128 (1972), 153–182.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Edwards, R. E., The translates and affine transforms of some special functions.J. London Math. Soc. 27 (1952), 160–175.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Edwards, R. E., Approximation theorems for translates.Proc. London Math. Soc. 35 (1959), 321–342.CrossRefGoogle Scholar
  5. 5.
    Fuchs, W. H. J., A generalization of Carlson's theorem.J. London Math. Soc. 21 (1946), 106–110.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ganelius, T., Some approximation theorems related to Wiener's.Proc of the Conference on Constructive Theory of Functions, Budapest 1969, 173–181. Eds: Alexits, G., Stechkin, S. B., Akadémiai Kiadó, Budapest 1972.Google Scholar
  7. 7.
    Izumi, S., Kawata, T., Quasi-analytic class and closure of {t n} in the interval (−∞, ∞).Tohoku Math. J. 43 (1937), 267–273.Google Scholar
  8. 8.
    Landau, H. J., On the completeness of a set of translates.J. Approx. Th. 5 (1972), 438–440.MATHCrossRefGoogle Scholar
  9. 9.
    Lönnroth, J.,Hahn-Banach's sats och korta translationer. Master's thesis at the University of Göteborg, 1966.Google Scholar
  10. 10.
    Zalik, R., On some gap theorems and closure of translates.Notices A.M.S.25, No.2, 754-B35, (1978).Google Scholar
  11. 11.
    Zalik, R., On approximation by shifts and a theorem of Wiener.Trans. Amer. Math. Soc. 243 (1978), 299–308.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1981

Authors and Affiliations

  • Birger Faxén
    • 1
  1. 1.UPPSALA

Personalised recommendations