Arkiv för Matematik

, Volume 23, Issue 1–2, pp 281–314

Critical points of Green's function, harmonic measure, and the corona problem

  • Peter W. Jones
  • Donald E. Marshall


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlfors, L. V., Bounded analytic functions,Duke Math. J. 14 (1947), 1–11.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ahlfors, L. V., Open Riemann surfaces and extremal problems on compact subregions,Comment. Math. Helv 24 (1950), 100–134.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ahlfors, L. V.,Conformal invariants: topics in geometric function theory, McGraw-Hill, 1973.Google Scholar
  4. 4.
    Ahlfors, L. V. andSario, L.,Riemann surfaces, Princeton University Press, 1960.Google Scholar
  5. 5.
    Alling, N. L., A proof of the corona conjecture for finite open Riemann surfaces,Bull. Amer. Math. Soc. 70 (1964), 110–112.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alling, N. L., Extensions of meromorphic function rings over non-compact Riemann surfaces, I,Math. Z. 89 (1965), 273–299.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Behrens, M., On the corona problem for a class of infinitely connected domains,Bull. Amer. Math. Soc. 76 (1970), 387–391.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Behrens, M., The maximal ideal space of algebras of bounded analytic functions on infinitely connected domains,Trans. Amer. Math. Soc. 161 (1971), 358–380.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Behrens, M., Interpolation and Gleason parts inL-domains, preprint.Google Scholar
  10. 10.
    Benedicks, M., Positive harmonic functions vanishing on the boundary of certain domains inR n,Ark. Mat. 18 (1980), 53–72.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Carleson, L., An interpolation theorem for bounded analytic functions,Amer. J. Math. 80 (1958), 921–930.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Carleson, L., Interpolation by bounded analytic functions and the corona problem,Ann. of Math. 76 (1962), 547–559.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Carleson, L., Research on interpolation problems,Technical report, Department of Mathematics, Uppsala University, Uppsala, 1962.Google Scholar
  14. 14.
    Carleson, L., Estimates of harmonic measure,Ann. Acad. Sci. Fenn. 7 (1982), 25–32.MATHMathSciNetGoogle Scholar
  15. 15.
    Carleson, L., OnH in multiply connected domains,Conference on harmonic analysis in honor of Antoni Zygmund, Vol. II, ed. Beckner, W., et al, Wadsworth, 1983, pp. 349–372.Google Scholar
  16. 16.
    Deeb, W. M., A class of infinitely connected domains and the corona,Trans. Amer. Math. Soc. 231 (1977), 101–106.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Deeb, W. M. andWilken, D. R., D domains and the corona,Trans. Amer. Math. Soc. 231 (1977), 107–115.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Earle, C. J. andMarden, A., Projections to automorphic functions,Proc. Amer. Math. Soc. 19 (1968), 274–278.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Earle, C. J. andMarden, A., On Poincaré series with application toH p spaces on bordered Riemann surfaces,Illinois J. Math. 13 (1969), 202–219.MATHMathSciNetGoogle Scholar
  20. 20.
    Forelli, F., Bounded holomorphic functions and projections,Illinois J. Math. 10 (1966), 367–380.MATHMathSciNetGoogle Scholar
  21. 21.
    Gamelin, T. W., Localization of the corona problem,Pacific J. Math. 34 (1970), 73–81.MATHMathSciNetGoogle Scholar
  22. 22.
    Gamelin, T. W.,Uniform algebras and Jensen measures, London Math. Soc. Lecture Notes 32, Cambridge University Press, 1978.Google Scholar
  23. 23.
    Gamelin, T. W., Wolff's proof of the corona theorem,Israel J. Math. 37 (1980), 113–119.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Grrnett, J. B.,Analytic capacity and measure, Lecture Notes in Math. 297, Springer-Verlag, 1972.Google Scholar
  25. 25.
    Garnett, J. B.,Bounded analytic functions, Academic Press, 1981.Google Scholar
  26. 26.
    Garnett, J. B., Gehring, F. W. andJones, P. W., Conformally invarient length sums,Indiana Univ. Math. J., to appear.Google Scholar
  27. 27.
    Jerison, D. S. andKenig, C. E., Hardy spaces,A , and singular integrals on chord-arc domains,Math. Scand. 50 (1982), 221–248.MATHMathSciNetGoogle Scholar
  28. 28.
    Jones, P. W.,L estimates for the\(\bar \partial \) problem in a halfplane,Acta Math. 150 (1983), 137–152.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Jones, P. W., Recent advances in the theory of Hardy spaces, inProceedings of the International Congress Math., Warsaw, 1983.Google Scholar
  30. 30.
    Lavrentiev, M., Boundary problems in the theory of univalent functions,Amer. Math. Soc. Translations, Series 2, Vol.32, pp. 1–35. Originally published inMat. Sb. (N.S.) 1 (43) (1936), 815–844 (in Russian).Google Scholar
  31. 31.
    Marden, A., On finitely generated Fuchsian groups,Comment. Math. Helv. 42 (1967), 81–85.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Nakai, M., Corona problem for Riemann surfaces of Parreau-Widom type,Pacific J. Math. 103 (1982), 103–109.MATHMathSciNetGoogle Scholar
  33. 33.
    Nehari, Z.,Conformal mapping, McGraw-Hill, 1952.Google Scholar
  34. 34.
    Pommerenke, Ch., On automorphic functions and Carleson sets,Michigan Math. J. 23 (1976), 129–136.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Pommerenke, Ch., On the Green'sfuunction of Fuchsian groups,Ann. Acad. Sci. Fenn. 2 (1976), 409–427.MATHMathSciNetGoogle Scholar
  36. 36.
    Pommerenke, Ch., Schlichte funktionen und analytische funktionen von beschränkter mittler oszillation,Comment. Math. Helv. 52 (1977), 591–602.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Rubel, L. A. andRyff, J. V., The bounded weak-star topology and the bounded analytic functions,J. Funct. Anal. 5 (1970), 167–183.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Scheinberg, S., thesis, Princeton University, 1962.Google Scholar
  39. 39.
    Stein, E. M. andWeiss, G.,An introduction to Fourier analysis on Euclidean Spaces, Princeton University Press, 1971.Google Scholar
  40. 40.
    Stout, E. L., Two theorems concerning functions holomorphic on multiply connected domains,Bull. Amer. Math. Soc. 69 (1963), 527–530.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Stout, E. L., Bounded holomorphic functions on finite Riemann surfaces,Trans. Amer. Math. Soc. 120 (1965), 255–285.CrossRefMathSciNetGoogle Scholar
  42. 42.
    Stout, E. L., On some algebras of analytic functions on finite open Riemann surfaces,Math. Z. 92 (1966), 366–379. Corrections to: On some algebras of analytic functions on finite open Riemann surfaces,Math. Z. 95 (1967), 403–404.CrossRefMathSciNetGoogle Scholar
  43. 43.
    Stout, E. L., Interpolation on finite open Riemann surfaces,Proc. Amer. Math. Soc. 18 (1967), 274–278.MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Walsh, J. L.,The location of critical points, Amer. Math. Soc. Colloq. Publ. Vol. XXXIV, 1950.Google Scholar
  45. 45.
    Widom, H., Extremal polynomials associated with a system of curves in the complex plane,Adv. in Math. 2 (1969), 127–132.CrossRefMathSciNetGoogle Scholar
  46. 46.
    Widom, H.,H p sections of vector bundles over Riemann surfaces,Ann. of Math. 94 (1971), 304–324.CrossRefMathSciNetGoogle Scholar
  47. 47.
    Widom, H., The maximum principle for multiple-valued analytic functions,Acta Math. 126 (1971), 63–81.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Wolff, T., Restrictions ofA weights, preprint.Google Scholar

Copyright information

© Institut Mittag-Leffler 1985

Authors and Affiliations

  • Peter W. Jones
    • 1
  • Donald E. Marshall
    • 2
  1. 1.Mathematics DepartmentYale UniversityNew HavenU.S.A.
  2. 2.University of WashingtonSeaffleU.S.A.

Personalised recommendations