Arkiv för Matematik

, Volume 21, Issue 1–2, pp 283–307

L2 estimates for Fourier integral operators with complex phase

  • Lars Hörmander


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calderón, A. P. andVaillancourt, R., A class of bounded pseudodifferential operators,Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185–1187.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Duistermaat, J. J. andSjöstrand, J., A global construction for pseudo-differential operators with non-involutive characteristics,Invent. Math. 20 (1973), 209–225.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hörmander, L., Fourier integral operators I,Acta Math. 127 (1971), 79–183.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hörmander, L., The Weyl calculus of pseudo-differential operators,Comm. Pure Appl. Math. 32 (1979), 359–443.MATHCrossRefGoogle Scholar
  5. 5.
    Melin, A., Lower bounds for pseudo-differential operators,Ark. Mat. 9 (1971), 117–140.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Melin, A. andSjöstrand, J.,Fourier integral operators with complex-valued phase functions, Springer Lecture Notes459 (1974), 120–223.Google Scholar
  7. 7.
    Melin, A. andSjöstrand, J., Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem,Comm. Partial Differential Equations 1 (1976), 313–400.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Institut Mittag Leffler 1983

Authors and Affiliations

  • Lars Hörmander
    • 1
  1. 1.Department of MathematicsUniversity of LundLundSweden

Personalised recommendations