Archive for Rational Mechanics and Analysis

, Volume 112, Issue 4, pp 339–362 | Cite as

Closed orbits of fixed energy for singular Hamiltonian systems

  • Antonio Ambrosetti
  • Vittorio Coti Zelati


Periodic Solution Variational Principle Close Orbit Singular Potential Free Loop Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ambrosetti,Esistenza di infinite soluzioni per problemi non lineari in assenza di parametro, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)52 (1972), 402–409.MathSciNetGoogle Scholar
  2. 2.
    A. Ambrosetti &V. Coti Zelati,Critical points with lack of compactness and singular dynamical systems, Ann. Mat. Pura e Appl. (3)149 (1987), 237–259.CrossRefzbMATHGoogle Scholar
  3. 3.
    A. Ambrosetti &G. Mancini,Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann.255 (1981), 405–421.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    A. Bahri &P. H. Rabinowitz,A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal.82 (1989), 412–428.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    V. Benci &F. Giannoni,Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials, J Differential Equations82 (1989), 60–70.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    V. Coti Zelati,Dynamical systems with effective-like potentials, Nonlinear Anal. TMA12 (1988), 209–222.CrossRefzbMATHGoogle Scholar
  7. 7.
    M. Degiovanni &F. Giannoni,Periodic solutions of dynamical systems with Newtonian type potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)15 (1988), 467–494.zbMATHMathSciNetGoogle Scholar
  8. 8.
    M. Degiovanni, F. Giannoni &A. Marino,Dynamical systems with Newtonian tupe potentials, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)81 (1987), 271–278.zbMATHMathSciNetGoogle Scholar
  9. 9.
    E. Fadell & S. Husseini,On the category of free loop space, preprint, University of Wisconsin — Madison.Google Scholar
  10. 10.
    W. B. Gordon,Conservative dynamical systems involving strong forces, Trans. Amer. Mat. Soc.204 (1975), 113–135.CrossRefzbMATHGoogle Scholar
  11. 11.
    C. Greco,Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Analysis T.M.A.12 (1988), 259–270.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    C. Greco,Remarks on periodic solutions, with prescribed energy, for singular Hamiltonian systems, Comment. Math. Univ. Carolin.28 (1987), 661–672.ADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    J. A. Hempel,Multiple solutions for a class of nonlinear boundary value problem, Indiana Univ. Math.J. 30 (1971), 983–996.CrossRefMathSciNetGoogle Scholar
  14. 14.
    P. Majer,Ljusternik-Schnirelman theory with local Palais—Smale condition and singular dynamical systems, preprint, Scuola Normale Superiore — Pisa.Google Scholar
  15. 15.
    J. Moser,Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math.23 (1970), 609–636.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Z. Nehari,Characteristic values associated with a class of nonlinear second-order differential equations, Acta Math.105 (1961), 141–175.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    A. Szulkin,Ljusternik-Schnirelmann theory on C 1 manifolds, Ann. Inst. H. Poincaré. Anal. Non Linéaire5 (1988), 119–139.zbMATHMathSciNetGoogle Scholar
  18. 18.
    S. Terracini,An homotopical index and multiplicity of periodic solutions to dynamical system with singular potential, preprint CEREMADE — Paris.Google Scholar
  19. 19.
    E. W. C. Van Groesen,Analytical mini-max methods for Hamiltonian break orbits of prescribed energy, J. Math. Anal. Appl.132 (1988), 1–12.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Antonio Ambrosetti
    • 1
    • 2
  • Vittorio Coti Zelati
    • 1
    • 2
  1. 1.Scuola Normale SuperiorePisa
  2. 2.SISSATriesteItaly

Personalised recommendations