, Volume 31, Issue 2, pp 283–289 | Cite as

Neocortical development and social structure in primates

  • Toshiyuki Sawaguchi
  • Hiroko Kudo
Short Communication


The relationships between the relative size of the neocortex and differences in social structures were examined in prosimians and anthropoids. The relative size of the neocortex (RSN) of a given congeneric group in each superfamily of primates was measured based on the allometric relationships between neocortical volume and brain weight for each superfamily, to control phylogenetic affinity and the effects of brain size. In prosimians, “troop-making” congeneric groups (N=3) revealed a significantly larger RSN than solitary groups (N=6), and there was a significant, positive correlation between RSN and troop size. In the case of anthropoids, polygynous/frugivorous groups (N=5) revealed a significantly larger RSN than monogynous/frugivorous groups (N=8). Furthermore, a significant, positive correlation between RSN and troop size was found for frugivorous congeneric groups of the Ceboidea. These results suggest that neocortical development is associated with differences in social structure among primates.

Key Words

Neocortex Relative size Allometry Congeneric group Social structure Monogyny Polygyny Primates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baylis, G. C., E. T. Rolls, &C. M. Leonard, 1985. Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey.Brain Res., 342: 91–102.CrossRefPubMedGoogle Scholar
  2. Carlson, M., M. F. Huerta, C. G. Cusick, &J. H. Kaas, 1986. Studies on the evolution of multiple somatosensory representations in primates: The organization of anterior partietal cortex in the New World Callitrichid,Saguinus.J. Comp. Neurol., 246: 409–426.CrossRefPubMedGoogle Scholar
  3. Caspari, E. W., 1979. Evolutionary theory and the evolution of the human brain. In:Development and Evolution of Brain Size,M. E. Hahn,C. Jensen, &B. C. Dudek (eds.), Academic Press, New York, pp. 9–28.Google Scholar
  4. Cheney, D. L., S. Robert, &B. B. Smuts, 1986. Social relationships and social cognition in non-human primates.Science, 234: 1361–1366.PubMedGoogle Scholar
  5. Clutton-Brock, T. H. &P. H. Harvey, 1977. Primate ecology and social organization.J. Zool. (London), 183: 1–39.Google Scholar
  6. ———— & ————, 1980. Primates, brain and ecology.J. Zool. (London), 190: 309–323.Google Scholar
  7. Crook, J. H. &J. S. Gartlan, 1966. Evolution of primate societies.Nature, 210: 1200–1203.PubMedGoogle Scholar
  8. Eisenberg, J. F., 1981.The Mammalian Radiation: An Analysis of Trends in Evolution, Adaptation, and Behavior. Univ. of Chicago Press, Chicago.Google Scholar
  9. ————,N. Muckenhirn, &R. Rudran, 1972. The relationship between ecology and social structure in Primates.Science, 196: 863–874.Google Scholar
  10. Endler, J. A., 1986.Natural Selection in the Wild. Princeton Univ. Press, Princeton.Google Scholar
  11. Falk, D., 1987. Hominid paleoneurology.Ann. Rev. Anthropol., 16: 13–30.Google Scholar
  12. Foley, R., 1987.Another Unique Species: Patterns in Human Evolutionary Ecology. John Wiley & Sons, New York.Google Scholar
  13. Frazen, E. A. &R. E. Myers, 1973. Neural control of social behavior: Prefrontal and anterior temporal cortex.Neuropsychology, 11: 141–157.Google Scholar
  14. Fuster, J. M., 1980.The Prefrontal Cortex. Raven Press, New York.Google Scholar
  15. Goldizen, A. W., 1987. Tamarins and marmosets: Communal care of offspring. In:Primate Societies,B. B. Smuts,D. L. Cheney,R. W. Seyfarth,R. W. Wrangham, &T. T. Struhsaker (eds.), Univ. of Chicago Press, Chicago, pp. 34–43.Google Scholar
  16. Heffner, H. E. &R. S. Heffner, 1986. Effect of unilateral and bilateral auditory cortex lesions on the discrimination of vocalizations by Japanese macaques.J. Neurophysiol., 56: 683–701.PubMedGoogle Scholar
  17. Holloway, R. L., 1973.The Role of Human Social Behavior in the Evolution of the Brain. American Museum of Natural History, New York.Google Scholar
  18. ————, 1974. The cast of fossil hominid brains.Sci. Amer., 231: 106–115.PubMedGoogle Scholar
  19. Jerison, H. J., 1973.Evolution of the Brain and Intelligence. Academic Press, New York.Google Scholar
  20. Jolly, A., 1985.The Evolution of Primate Behavior. MacMillan Press, New York.Google Scholar
  21. Kling, A. S., 1986. Neurological correlates of social behavior.Ethol. Sociobiol., 7: 175–186.Google Scholar
  22. Lovejoy, C. W., 1981. The origin of man.Science, 311: 341–350.Google Scholar
  23. Mace, G., P. H. Harvey, &T. H. Clutton-Brock, 1980. Is brain size an ecological variable?Trends Neurosci., 3: 193–196.CrossRefGoogle Scholar
  24. Martin, R. D. &R. May, 1981. Outward signs of breeding.Nature, 293: 7–9.PubMedGoogle Scholar
  25. Myers, R. E., 1972. Role of prefrontal and anterior temporal cortex in social behavior and affect in monkeys.Acta Neurobiol. Exp., 32: 567–579.Google Scholar
  26. ————,C. Swett, &M. M. Miller, 1973. Loss of social group affinity following prefrontal lesions in free-ranging macaques.Brain Res., 64: 257–269.CrossRefPubMedGoogle Scholar
  27. Napier, J. R. &P. H. Napier, 1986.The Natural History of the Primates. Cambridge Univ. Press, Cambridge.Google Scholar
  28. Passingham, R. E., 1973. Anatomical differences between the neocortex of man and other primates.Brain Behav. Evol., 7: 337–359.PubMedGoogle Scholar
  29. Penfield, W., 1966. Speech, perception and uncommitted cortex. In:Brain and Conscious Experience,J. C. Eccles (ed.), Springer-Verlag, Berlin, pp. 217–237.Google Scholar
  30. Perrett, D. I., E. T. Rolls, &W. Caan, 1982. Visual neurons responsive to faces in the monkey temporal cortex.Exp. Brain Res., 47: 329–342.CrossRefPubMedGoogle Scholar
  31. Radinsky, L. B., 1975. Primate brain evolution.Amer. Scientist, 63: 656–663.Google Scholar
  32. Richard, A. F., 1985.Primates in Nature. Freeman, New York.Google Scholar
  33. Robinson, J. G., P. C. Right, &W. G. Kinzey, 1987. Monogamous cebids and their spacing. In:Primate Societies,B. B. Smuts,D. L. Cheney,R. W. Seyfarth,R. W. Wrangham, &T. T. Struhsaker (eds.), Univ. of Chicago Press, Chicago, pp. 44–53.Google Scholar
  34. Sawaguchi, T. &H. Kudo, 1987. Evolutionary theories on primate social structures and behaviors: A discussion on a synthesis.Prim. Res., 3: 48–58. (in Japanese with English abstract)Google Scholar
  35. ---- & ----, submitted, “Active” selection may participate in evolution of primates.Google Scholar
  36. Smuts, B. B., D. L. Cheney, R. W. Seyfarth, R. W. Wrangham, &T. T. Struhsaker (eds.), 1987.Primate Societies. Univ. of Chicago Press, Chicago.Google Scholar
  37. Stephan, H., H. Frahm, &G. Baron, 1981. New and revised data on volume of brain structures in insectivores and primates.Folia Primatol., 35: 1–29.PubMedGoogle Scholar
  38. Stuss, D. T. &D. F. Benson, 1986.The Frontal Lobes. Raven Press, New York.Google Scholar
  39. de Waal, F. B. M., 1987. Dynamics of social relationships. In:Primate Societies,B. B. Smuts,D. L. Cheney,R. W. Seyfarth,R. W. Wrangham, &T. T. Struhsaker (eds.), Univ. of Chicago Press, Chicago, pp. 421–429.Google Scholar
  40. Wilson, E. O., 1975.Sociobiology: The New Synthesis. Belknap Press of Harvard Univ. Press, Cambridge.Google Scholar
  41. Wrangham, R. W., 1987. Evolution of social structure. In:Primate Societies,B. B. Smuts,D. L. Cheney,R. W. Seyfarth,R. W. Wrangham, &T. T. Struhsaker (eds.), Univ. of Chicago Press, Chicago, pp. 282–296.Google Scholar
  42. Zilles, K., H. Stephan, &A. Schleicher, 1982. Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In:Primate Brain Evolution,E. Armstrong &D. Falk (eds.), Plenum Press, New York, pp. 177–201.Google Scholar

Copyright information

© Japan Monkey Centre 1990

Authors and Affiliations

  • Toshiyuki Sawaguchi
    • 1
  • Hiroko Kudo
    • 1
  1. 1.Kyoto UniversityJapan

Personalised recommendations