Environmental Geology

, Volume 4, Issue 3–4, pp 201–208 | Cite as

Migration and retention of elements at the Oklo natural reactor

  • Douglas G. Brookins


The Oklo natural reactor, Gabon, permits study of fission-produced elemental behavior in a natural geologic environment. The uranium ore that sustained fission reactions formed about 2 billion years before present (BYBP), and the reactor was operative for about 5 × 105 yrs between about 1.95 to 2 BYBP. The many tons of fission products can, for the most part, be studied for their abundance and distribution today. Since reactor shutdown, many fissiogenic elements have not migrated from host pitchblende, and several others have migrated only a few tens of meters from the reactor ore. Only Xe and Kr have apparently been largely removed from the reactor zones. An element by element assessment of the Oklo rocks' ability to retain the fission products, and actinides and radiogenic Pb and Bi as well, leads to the conclusion that no widespread migration of the elements occurred. This suggests that rocks with more favorable geologic characteristics are indeed well suited for consideration for the storage of radioactive waste.


Migration Uranium Reactor Zone Radioactive Waste Fission Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Allard, B., Torstenfelt, B., Andersson, K., and Rydberg, J., 1980, Possible retention of iodine in the ground, in Northrup, C. J., ed., Sci. Basis for Nuc. Wste. Mngmnt. II, New York, Plenum Press, p. 673–680.Google Scholar
  2. Barton, P. D., and Skinner, B. J., 1979, Sulfide mineral stabilities: in Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits, 2nd Ed.: New York, Wiley-Interscience, p. 278–403.Google Scholar
  3. Bonhomme, M., Leclerc, J., and Weber, F., 1978, Etude radiochronologique complémentaire de la série du Francevillien et de son environment: in IAEA p. 19–24.Google Scholar
  4. Brookins, D. G., 1978a, Eh-pH diagrams for elements from Z=40 to Z=52: application to the Oklo natural reactor: Chem. Geol., v. 23, p. 324–342.Google Scholar
  5. Brookins, D. G., 1978b, Retention of transuranic and actinide elements and bismuth at the Oklo natural reactor, Gabon: Chem. Geol., v. 23, p. 309–323.Google Scholar
  6. Brookins, D. G., 1978c, Application of Eh-pH diagrams to problems of retention and/or migration of fissiogenic elements at Oklo: in IAEA, p. 243–265.Google Scholar
  7. Brookins, D. G., 1980, Syngenetic model for some early Proterozoic uranium deposits: evidence from Oklo: Int. Atomic Energy Agency Sym. on the Pine Creek Geosyncline, p. 709–719.Google Scholar
  8. Brookins, D. G., 1981, Alkali and alkaline earth studies at Oklo: in Moore, J. G., ed., Sci. Basis Nuc. Wste. Mngmt. III: New York, Plenum Press, p. 275–282.Google Scholar
  9. Brookins, D. G., Lee, M. J., Mukhopadhyay, B., and Bolivar, S. L., 1976, Search for fission-produced Rb, Sr, Cs and Ba at Oklo: in IAEA, p. 401–414.Google Scholar
  10. Christensen, A. B., Del Debbio, J. A., Knecht, J. D., and Tanner, J. E., 1981, in Moore, J. G., ed., Loading and leachage of krypton immobilized in zeolites and glass: Basis Nuclear Wste. Mngmnt. III: New York, Plenum Press, p. 267–274.Google Scholar
  11. DeLaeter, J. R., Rosman, J. K. R., and Smith, C. L., 1980, The Oklo natural reactor: cumulative fission yields and retentivity of the symmetric mass region fission products: Earth Plan. Sci. Lttrs., v. 50, p. 238–246.Google Scholar
  12. Drozd, R. J., Hohenberg, C. M., and Morgan, C. J., 1974, Heavy rare gases from Rabbit Lake (Canada) and the Oklo mine (Gabon): natural spontaneous chain reactions in old uranium deposits: Earth Plan. Sci. Lttrs., v. 23, p. 28–37.Google Scholar
  13. Fréjacques, C., Blain, C., Devilliers, C., Hagemann, R., and Ruffenbach, J. C., 1976, Conclusions tirées de l'étude de la migration des produits de fission: in IAEA, p. 509–526.Google Scholar
  14. Gancarz, A. J., 1978, U-Pb age (2.05 × 109 years) of the Oklo uranium deposit: in IAEA, p. 513–520.Google Scholar
  15. Gancarz, A. J., Cowan, G. A., Curtis, D. H., and Maeck, W. L., 1980, Tc-99, Ru and Pb migration around the Oklo natural fission reactors: in Northrup, C. J., ed., Sci. Basis Nuc. Wste. Mngmnt. II: New York, Plenum Press, p. 601–608.Google Scholar
  16. Gauthier-Lafaye, F., 1978, Suivi géologique de l'exploitation des réacteurs naturels d'Oklo: in IAEA, p. 75–130.Google Scholar
  17. Geoffroy, J., 1976, Etude microscopique des minerais uraniféres d'Oklo: in IAEA, p. 133–150.Google Scholar
  18. IAEA, 1976, The Oklo phenomenon: Inter. Atomic Energy Agency Sym. 204, 646 p.Google Scholar
  19. IAEA, 1978, Natural fission reactors: Inter. Atomic Energy Agency Tech. Pub. 119, 754 p.Google Scholar
  20. McLennan, S. M., and Taylor, S. R., 1979, Rare earth elements mobility associated with uranium mineralization: Nature, v. 282, p. 247–249.CrossRefGoogle Scholar
  21. Naudet, R., 1978, Les réacteurs d'Oklo: cinq ans d'exploration du site: in IAEA, p. 3–18.Google Scholar
  22. Weber, F., 1969, Une série precambrienne du Gabon: Le Francevillien, Sédimenrologie, géochimie, relations avec les gites minéraux associés: Ph.D. dissertation, Univ. Strasbourg, 325 p.Google Scholar
  23. Weber, F., and Bonhomme, M., 1976, Données radiochronologiques nouvelles sur le Francevillien et son environment: in IAEA, p. 17–36.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • Douglas G. Brookins
    • 1
  1. 1.Department of GeologyUniversity of New MexicoAlbuquerque

Personalised recommendations