, Volume 9, Issue 2, pp 189–217 | Cite as

Studies in paraconsistent logic I: The dialectical principle of the unity of opposites

  • Newton C. A. Da Costa
  • Robert G. Wolf
Society for Exact Philosophy Annual Meeting 1978


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves, Elias Humberto: 1976.Lógica e Inconsisténcia: Um Estudo dos Cálculos C n. Universidade de São Paulo masters thesis.Google Scholar
  2. Anderson, Alan Ross, and Belnap, Nuel D. Jr.: 1975.Entailment: the Logic of Relevance and Necessity. Princeton (Princeton University Press).Google Scholar
  3. da Costa, Newton C.A.: 1974. “On the Theory of Inconsistent Formal Systems”,Notre Dame Journal of Formal Logic, vol. 15, pp. 497–510.Google Scholar
  4. da Costa, Newton C.A., and Alves, Elias Humberto: 1976. “Une Sémantique pour le Calcul C1”,Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, série A, vol. 283, pp. 729–731.Google Scholar
  5. da Costa, Newton C.A., and Alves, Elias Humberto: 1977, “A Semantical Analysis of the Calculi Cn”,Notre Dame Journal of Formal Logic, vol. 18, pp. 621–630.Google Scholar
  6. Dunn, J. Michael: 1976. “A Kripke-style Semantics for R-Mingle Using a Binary Accessibility Relation”,Studia Logica, vol. 35, pp. 163–172.Google Scholar
  7. Gödel, Kurt: 1932. “Zum Intuitionistischen Aussagenkalkül”,Akademie der Wissenschaften in Wien, Mathematisch-naturwissenschaftliche Klasse, Anzeiger vol. 69, pp. 65–66. Reprinted inErgebnisse Eines Mathematischen Kolloquiums, Heft 4 (1933), p. 40.Google Scholar
  8. Haack, Susan: 1974.Deviant Logic, London (Cambridge University Press).Google Scholar
  9. Hilpinen, Risto: 197+. “Approximate Truth and Truthlikeness”.Google Scholar
  10. Fine, Kit: 197, “Vagueness, Truth and Logic”,Synthese, vol. 30, pp. 265–300.Google Scholar
  11. Kamp, Hans: 1975. “Two Theories About Adiectives”,Formal Semantics of Natural Language, edited by E.L. Keenan, London (Cambridge University Press), pp. 123–155.Google Scholar
  12. McGill, V.J., and Parry, William Tuthill 1948. “The Unity of Opposites: a Dialectical Principle”,Science and Society, vol. 12, pp. 418–444.Google Scholar
  13. Meyer, Robert K.; 1974. “New Axiomatics for Relevant Logics. I”,Journal of Philosophical Logic, vol. 3, pp. 53–86.CrossRefGoogle Scholar
  14. Meyer, Robert K., and Routley, Richard: 1974. “Classical Relevant Logics II”,Studia Logica, vol. 33, pp. 183–194.CrossRefGoogle Scholar
  15. Rasiowa, Helena: 1974.An Algebraic Approach to Non-classical Logics. Amsterdam (North-Holland Publishing Company) and New York (American Elsevier Publishing Company, Inc.)Google Scholar
  16. Rescher, Nicholas: 1969.Many-valued Logic. New York (McGraw-Hill Book Company).Google Scholar
  17. Routley, Richard, and Meyer, Robert K.: 1976. “Dialectical Logic. Classical Logic, and the Consistency, of the World”,Studies in Soviet Thought, vol. 16, pp. 1–25.CrossRefGoogle Scholar
  18. Routley, Richard, and Meyer, Robert K.: 1978.Relevant Logics and their Rivals, Department of Philosophy, The Research School of Social Sciences, The Australian National University, Monograph Series.Google Scholar
  19. Thomason, Richmond H.: 197+. “Supervaluations, the Bald Man, and the Lottery”.Google Scholar
  20. Wolf, Robert G.: 1977. “Objectivity in Logic: a Phenomenological Approach”,Interdisciplinary Phenomenology, edited by Don Ihde and Richard M. Zaner, The Hague (Martinus Nijhoff), pp. 169–185.Google Scholar

Copyright information

© Bar-Ilan University 1980

Authors and Affiliations

  • Newton C. A. Da Costa
    • 1
    • 2
  • Robert G. Wolf
    • 1
    • 2
  1. 1.Institute of MathematicsUniversity of Sao PauloSao PauloBrazil
  2. 2.Department of Philosophical StudiesSouthern Illinois UniversityEdwardsvilleUSA

Personalised recommendations