Advertisement

Ionics

, Volume 5, Issue 1–2, pp 23–30 | Cite as

The concentration of mobile ions in insulating oxide films during growth

  • A. Moehring
  • M. Pilaski
  • M. M. Lohrengel
Article

Abstract

The high field model had to be modified for the anodic growth of amorphous oxide films (Al, Nb, and Ta). Mobile ions are only formed at the interfaces and migrate through the film. Simulations based on this assumption show a very similar shape of current-potential curves compared to the experimental results. The simulations use only one free parameter, the charge density p. All other parameters, such as i0 and β, were taken from the experiments.

The formation of amorphous oxides is independent of the crystallographic orientation of the metal substrate. For the crystalline oxide films on Zr the oxide kinetics differ from grain to grain. This requires localized measurements on single grains. Such experiments were carried out with a new device, the droplet cell. Examples of the potentiodynamic and the capacity measurements are presented.

Keywords

Charge Density Oxide Film Free Parameter High Field Field Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [1]
    M.M. Lohrengel, Ionics1, 393 (1995).CrossRefGoogle Scholar
  2. [2]
    H. Böttger, V.V. Bryksin, in: Hopping Conduction in Solids, VCH Verlagsgesellschaft, Weinheim (1985).Google Scholar
  3. [3]
    A. Güntherschulze, H. Betz, Z. Phys.92, 367 (1934)Google Scholar
  4. [4]
    K.J. Vetter, “Elektrochemische Kinetik”, Springer Verlag, Berlin 1961.Google Scholar
  5. [5]
    H. Takahashi, M. Nagayama, Electrochim. Acta23, 279 (1978)Google Scholar
  6. [6]
    V. Macagno, J.W. Schultze, J. Electroanal. Chem.180, 157 (1984).CrossRefGoogle Scholar
  7. [7]
    D. Diesing, A. W. Hassel, M. M. Lohrengel, Thin Solid Films, submitted.Google Scholar
  8. [8]
    G.J. Tibol, R. W. Hull, J. Electrochem. Soc.111, 1368 (1964).Google Scholar
  9. [9]
    K. Kluger, M. M. Lohrengel, Ber. Bunsenges. Phys. Chem.95, 1458 (1991).Google Scholar
  10. [10]
    M.M. Lohrengel, Ber. Bunsenges. Phys. Chem.97, 440 (1993).Google Scholar
  11. [11]
    M.M. Lohrengel, Electrochim. Acta39, 1265 (1994).CrossRefGoogle Scholar
  12. [12]
    S. Rüße, M.M. Lohrengel, J.W. Schultze, Solid State Ionics72, 29 (1994).Google Scholar
  13. [13]
    E. Dörre, H. Hübner, “Alumina”, Springer Verlag, Berlin 1984.Google Scholar
  14. [14]
    P. Winkel, C.A. Pistorius, W.Ch. van Geel, Philips Res. Rep.13, 277 (1958).Google Scholar
  15. [15]
    J.P.S. Pringle, Electrochim. Acta25, 1425 (1979), N. Khalil, J.S.L. Leach, Electrochim. Acta31, 1279 (1986); J.S.L. Leach, B.R. Pearson, Corros. Sci.28, 43 (1988); K. Shimizu, K. Kobayashi, G. E. Thompson, G.C. Wood, Phil. Mag. B64, 345 (1991).Google Scholar
  16. [16]
    M.M. Lohrengel, Materials Sci. Eng.R11, 243 (1993).Google Scholar
  17. [17]
    M.M. Lohrengel, K. Kluger, Elektrokhimiya29, 89 (1993).Google Scholar
  18. [18]
    M. Pilaski, Diploma Thesis, Heinrich-Heine-Universität Düsseldorf, 1998.Google Scholar
  19. [19]
    S. Kudelka, A. Michaelis, J.W. Schultze, Ber. Bunsenges. Phys. Chem.99, 1020 (1995).Google Scholar
  20. [20]
    M. Schweinsberg, A. Michaelis, J.W. Schultze, Electrochim. Acta42, 3303 (1997).CrossRefGoogle Scholar
  21. [21]
    M.M. Lohrengel, Electrochim. Acta42, 3265 (1997); A.W. Hassel, M.M. Lohrengel, Electrochim. Acta42, 3327 (1997).CrossRefGoogle Scholar
  22. [22]
    A. Moehring, Diploma Thesis, Heinrich-Heine-Universität Düsseldorf, 1998.Google Scholar

Copyright information

© IfI - Institute for Ionics 1999

Authors and Affiliations

  • A. Moehring
    • 1
  • M. Pilaski
    • 1
  • M. M. Lohrengel
    • 1
  1. 1.Heinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations