Advertisement

Ionics

, Volume 5, Issue 3–4, pp 275–285 | Cite as

Polarity sensitive electro-optical response in liquid crystal devices due to ionic diffusion in WO3 thin films

  • G. Strangi
  • N. Scaramuzza
  • C. Versace
  • E. Cazzanelli
  • F. Simone
  • A. Pennisi
  • R. Bartolino
Article

Abstract

The present work is aimed to a deeper understanding of the polarity sensitive electro-optical response observed in a liquid crystal cell with asymmetric insertion of a thin film of tungsten trioxide, deposited by r.f. sputtering on a transparent ITO substrate. After preliminary structural characterization of the films, the electro-optical response of the liquid crystal cells containing a WO3 layer has been analyzed. The voltage thresholds of the Frédericksz transition are increased or decreased for the anodic or the cathodic charge of the tungsten trioxide film, respectively. In such a way a polarity-sensitive electro-optical response is generated, with the same frequency of the applied field. Impedance and cyclic voltammetry measurements have been performed on liquid crystal cells having WO3 films inserted as electrode, for as-deposited films as well as for annealed films at increasing temperatures. A strong decrease of the ionic current is observed in the cell where the film underwent the highest temperature treatment, above 300 °C. All the measurements suggest that a charge redistribution occurs for the hydrogen ions, always present in the films, during the intercalation-deintercalation processes induced by the applied voltage, and it is responsible for the changes of the effective electric field acting on the liquid crystal layer.

Keywords

Liquid Crystal Voltage Threshold High Temperature Treatment Annealed Film Cyclic Voltammetry Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    S.K. Deb, Appl. Optics Suppl.3, 192 (1969); S.K. Deb, Philos. Mag.27, 801 (1973).Google Scholar
  2. [2]
    M.J. Sienko and J.M. Berak, in: The Chemistry of Extended Defects in Non-Metallic Solids, (L. Eyring and M. O'Keeffe, eds.) North Holland, 1970.Google Scholar
  3. [3]
    B.W. Faughnan, R.S. Crandal and P.M. Heyman, RCA Rev.36, 177 (1975).Google Scholar
  4. [4]
    T. Hirose, J. Phys. Soc. Jpn.49, 562 (1980).CrossRefGoogle Scholar
  5. [5]
    J. Nagai, Solid State Ionics40/41, 383 (1990).Google Scholar
  6. [6]
    C.G. Granqvist, Solid State Ionics53&56, 479 (1992).Google Scholar
  7. [7]
    C.G. Granqvist, Appl. Phys. A57, 3 (1993).Google Scholar
  8. [8]
    D.J. Smith, J.F. Vetelino and R.S. Falconer, Sensors and Actuators B13, 264 (1993).Google Scholar
  9. [9]
    Proc. III Symposium on “Electrochromic Materials”, (K.C. Ho, C.B. Greenberg and D.M. Mac Arthur, eds.) proc. Vol. 96–24, The Electrochemical Society (Pennington, NY, 1997).Google Scholar
  10. [10]
    S. Tanisaki, J. Phys. Soc. Japan.15, 566 (1960).Google Scholar
  11. [11]
    B.O. Loopstra and P. Boldrini, Acta Crystallogr. B21, 158 (1966); B.O. Loopstra and H.M. Rietveld, Acta Crystallogr. B25, 1420 (1969).Google Scholar
  12. [12]
    E. Salje and K. Viswanathan, Acta Crystallogr. A31, 356 (1975); E. Salje, Acta Crystallogr. B33, 574 (1975).Google Scholar
  13. [13]
    P.W. Woodward, A.W. Sleight and T. Vogt, J. Phys. Chem. Solids56, 1305 (1995).Google Scholar
  14. [14]
    K.L. Kehl, R.G. Hay and D.J. Wahl, J. Appl. Phys.23, 212 (1952).CrossRefGoogle Scholar
  15. [15]
    E. Cazzanelli, G. Mariotto, C. Vinegoni, A. Kuzmin and J. Purans, J. Solid State Chemistry143, 24 (1999).Google Scholar
  16. [16]
    M. Kawaminami, and T. Hirose, J. Phys. Soc. Japan.46, 864 (1979).Google Scholar
  17. [17]
    J.V. Gabrusenoks, P.D. Cikmach, A.R. Lusis, J.J. Kleperis and G.M. Ramans, Solid State Ionics14, 25 (1984).CrossRefGoogle Scholar
  18. [18]
    D. Dini, F. Decker, E. Masetti, J. Appl. Electrochemistry26, 647 (1996).Google Scholar
  19. [19]
    H. Demiryont, K.E. Nietering, Appl. Optics28, 1494 (1989).Google Scholar
  20. [20]
    O. Lev, Z. Wu, S. Bharathi, V. Glezer, A. Modestov, J. Gun, L. Rabinovitch, S. Samphath, Chem. Mater.9, 2354 (1997).CrossRefGoogle Scholar
  21. [21]
    K. Marszalek, Thin Solid Films175, 227 (1989).CrossRefGoogle Scholar
  22. [22]
    T. Nanba, T. Takahashi, T. Kudo, J. Non-Cryst. Solids178, 233 (1994).CrossRefGoogle Scholar
  23. [23]
    T. Nishide, F. Mizukami, Thin Solid Films259, 212 (1995).CrossRefGoogle Scholar
  24. [24]
    P. Delichere, P. Falaras, M. Froment and A. Hugot le Goff, Thin Solid Films161, 35 (1988).Google Scholar
  25. [25]
    T. Nanba, Y. Nishiyama and I. Yasui, J. Mater. Res.6, 1324 (1991).Google Scholar
  26. [26]
    T. Nanba and I. Yasui, J. Solid State Chem.83, 304 (1989).CrossRefGoogle Scholar
  27. [27]
    H.R. Zeller and H.U. Beyeler, Appl. Phys.13, 231 (1977).CrossRefGoogle Scholar
  28. [28]
    J.A. Duffy, M.D. Ingram and P.M.S. Monk, Solid State Ionics58, 109 (1992).CrossRefGoogle Scholar
  29. [29]
    J. Vondràk, J. Bludskà, Solid State Ionics68, 317 (1994).Google Scholar
  30. [30]
    Cl. Bohnke, O. Bohnke, B. Carquille and G. Robert, Solid State Ionics6, 121 (1982).Google Scholar
  31. [31]
    W Wagner, F. Rauch, C. Otterman and K. Bange, Nuclear Instruments and Methods in Physics Research B68, 262 (1992).Google Scholar
  32. [32]
    A. Agrawal, H. Habibi, Thin solid Films169, 257 (1989).CrossRefGoogle Scholar
  33. [33]
    M.D. Antonik, J.E. Schneider, E.L. Wittman, K. Snow, J.F. Vetelino and R.J. Lad, Thin Solid Films256, 247 (1995).CrossRefGoogle Scholar
  34. [34]
    T. Motohiro, Y. Taga, Thin Solid Films185, 137 (1990).CrossRefGoogle Scholar
  35. [35]
    G.W. Mbise, D. Le Bellac, G.A. Niklasson, C.G. Granqvist, J. Phys. D: Appl. Phys.30, 2103 (1997).CrossRefGoogle Scholar
  36. [36]
    G. Strangi, D.E. Lucchetta, E. Cazzanelli, N. Scaramuzza, C. Versace and R. Bartolino, Appl. Phys. Lett.74, 534 (1999).CrossRefGoogle Scholar
  37. [37]
    E. Cazzanelli, N. Scaramuzza, G. Strangi, C. Versace, A. Pennisi and F. Simone, Electrochimica Acta44, 3101 (1999).CrossRefGoogle Scholar
  38. [38]
    L.M. Blinov, V.G. Chigrinov, in: Electrooptic Effects in Liquid Crystal Materials, Springer Verlag. New York, 1994Google Scholar
  39. [39]
    M.F. Daniel, B. Desbat, J.C. Lassegues, R. Garie, J. Solid State Chem.73, 127 (1988).CrossRefGoogle Scholar
  40. [40]
    M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand and M. Figlarz, J. Solid State Chem.67, 235 (1987).CrossRefGoogle Scholar
  41. [41]
    P.G. de Gennes, J. Prost in: The Physics of Liquid Crystals, Oxford University Press 1993.Google Scholar
  42. [42]
    R. Hurditch, Electronics Lett.11, 142 (1975).Google Scholar

Copyright information

© IfI - Institute for Ionics 1999

Authors and Affiliations

  • G. Strangi
    • 1
  • N. Scaramuzza
    • 1
  • C. Versace
    • 1
  • E. Cazzanelli
    • 1
  • F. Simone
    • 2
  • A. Pennisi
    • 3
  • R. Bartolino
    • 1
  1. 1.Dipartimento di FisicaUniversità della Calabria and Istituto Nazionale per la Fisica della Materia (INFM), Unità di CosenzaRende (Cosenza)Italy
  2. 2.Dipartimento di FisicaUniversità di Catania and INFM, Unità di CataniaCataniaItaly
  3. 3.CNR and INFM, Unità di CataniaCataniaItaly

Personalised recommendations