, Volume 4, Issue 1–2, pp 53–60 | Cite as

Electrochemical promotion of CH4 oxidation on Pd

  • A. Giannikos
  • A. D. Frantzis
  • C. Pliangos
  • S. Bebelis
  • C. G. Vayenas


The effect of Non-Faradaic Electrochemical Modification of Catalytic Activity (NEMCA effect) or Electrochemical Promotion (EP) was used to promote the methane oxidation reaction to CO2 and H2O over Pd polycrystalline films interfaced with yttria-stabilized zirconia in galvanic cells of the type: CH4, O2, CO2, Pd/YSZ/Au, CH4, O2, CO2

It was found that by applying positive potentials or currents and thus, supplying O2− onto the catalyst surface, up to 90-fold increases in CH4 oxidation catalytic rate can be obtained. The induced changes in catalytic rate were two orders of magnitude higher than the corresponding rate of ion transfer to the catalyst-electrode surface, i.e. faradaic efficiency Λ values above 100 can be attained. The reaction exhibits electrophobic behavior under the experimental conditions of the investigation. The results can be rationalized on the basis of the theoretical considerations invoked to explain NEMCA behavior, i.e. the effect of changing work function on chemisorptive bond strengths of catalytically active electron donor or acceptor adsorbates.


Catalytic Rate Polycrystalline Film Faradaic Efficiency Electrochemical Promotion Change Work Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    L. D. Pfefferle and W.C. Pfefferle, Catal. Rev. -Sci. Eng.29, 219 (1987).Google Scholar
  2. [2]
    R. Pitchai and K. Klier, Catal. Rev. -Sci. Eng.28, 13 (1986).Google Scholar
  3. [3]
    Z. R. Ismagilov and M.A. Kerzhentev, Catal. Rev. -Sci. Eng.32, 51 (1990).Google Scholar
  4. [4]
    R. Prasad, L.A. Kennedy and E. Ruckenstein, Catal. Rev.-Sci. Eng.26, 1 (1984).Google Scholar
  5. [5]
    J.J. Spivey, Ind. Eng. Chem. Res.26, 2165 (1987)CrossRefGoogle Scholar
  6. [6]
    R.B. Anderson, K.C. Stein, J.J. Feenan and L.J.E. Hofer, Ind. Eng. Chem.53, 809 (1961).Google Scholar
  7. [7]
    C. F. Cullis and B. M. Willat, J. Catal.83, 267 (1983).CrossRefGoogle Scholar
  8. [8]
    R.F. Hicks, H. Qi, M. L. Young and R.G. Lee, J.Catal.122, 280 (1990).Google Scholar
  9. [9]
    Y.-F.Y. Yao, Ind Eng. Chem. Prod. Res. Dev.19, 293 (1980).CrossRefGoogle Scholar
  10. [10]
    D. L. Trimm and C. W. Lam, Chem. Eng. Sci.35, 1405 (1980).Google Scholar
  11. [11]
    T. Maillet, C. Solleau, J. Barbier Jr. And D. Duprez, Appl. Cat.B: Env.14, 85 (1997).Google Scholar
  12. [12]
    F.H. Ribeiro, M. Chow and R.A. Dalla Betta, J. Catal.146, 537 (1994).CrossRefGoogle Scholar
  13. [13]
    S. Seimanides and M. Stoukides, J. Catal.98, 540 (1986).CrossRefGoogle Scholar
  14. [14]
    K. Muto, N. Katada and M. Niwa, Appl. Cat. A: General,134, 203 (1996).Google Scholar
  15. [15]
    T.R. Baldwin and R. Burch, Appl. Catal.66, 359 (1990);66, 337(1990).Google Scholar
  16. [16]
    N. M. Rodriguez, S. G. Oh, R.A. Dalla-Betta and R.T.K. Baker, in preparation.Google Scholar
  17. [17]
    Y. Deng, T.G. Nevell, R.J. Ewen, C.L. Honeybourne and M.G. Jones, Appl. Catal A: General101, 51 (1993).CrossRefGoogle Scholar
  18. [18]
    D. O. Simone, T. Kennelly, N. L. Brungard and R. J. Farrauto, Appl. Catal.70, 87 (1991).Google Scholar
  19. [19]
    P. Briot and M. Primet, Appl. Catal.68, 301 (1991)Google Scholar
  20. [20]
    S. S. Peri and C. R. F. Lund, J. Catal.152, 410 (1995).CrossRefGoogle Scholar
  21. [21]
    C. Athanasiou, G. Marnellos, P. Tsiakaras and M. Stoukides, Ionics2, 353 (1996).CrossRefGoogle Scholar
  22. [22]
    R. F. Hicks, H. Q. I, M. L. Young and R. G. Lee, J. Catal.122, 280 (1990);122, 295 (1990).Google Scholar
  23. [23]
    K. Fujimoto, F. H. Ribeiro, A. T. Bell and E. Iglesia, Symp. in Catalysis, Spring ACS Meeting, New Orleans, L.A. (1996).Google Scholar
  24. [24]
    K. Otto, L.P. Haack and J.E. DeVries, Appl. Cat B: Env.1, 1 (1992).Google Scholar
  25. [25]
    P.E. Marti, M. Maciejewski and A. Baiker, J. Catal.139, 494 (1993).Google Scholar
  26. [26]
    C.G. Vayenas, S. Bebelis and S. Ladas, Nature (London)343, 625 (1990).CrossRefGoogle Scholar
  27. [27]
    J. Pritchard, Nature (London)343, 592(1990).CrossRefGoogle Scholar
  28. [28]
    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, “Non-Faradaic Electrochemical Modification of Catalytic Activity: A status report”, Catalysis Today11, 303 (1992).CrossRefGoogle Scholar
  29. [29]
    C.G. Vayenas, M.M. Jaksic, S.I. Bebelis and S.G. Neophytides, “The Electrochemical Activation of Catalytic Reactions” in: Modern Aspects of Electrochemistry, Vol.29, (J.O.'M. Bockris, B. E. Conway and E. White, Plenum Publ. Co.) New York, 1995, Ch. 2, pp. 57–202.Google Scholar
  30. [30]
    C.G. Vayenas and S.G. Neophytides, “Electrochemical Activation of Catalysis” in Catalysis, Vol. 12 (The Royal Society of Chemistry, Cambridge, 1996) pp. 195–253.Google Scholar
  31. [31]
    C.G. Vayenas and S. Bebelis, Solid State Ionics94, 267(1997).CrossRefGoogle Scholar
  32. [32]
    S. Neophytides, D. Tsiplakides, P. Stonehart, M. Jaksic and C.G. Vayenas, Nature370, 45 (1994).CrossRefGoogle Scholar
  33. [33]
    B. Grzybowska-Swierkosz and J. Haber, Annual Reports on the Progress of Chemistry (Section C, Physical Chemistry)91, 438 (1994).Google Scholar
  34. [34]
    J.O.'M. Bockris and Z.S. Minevski, Electrochimica Acta39, 1471 (1994).CrossRefGoogle Scholar
  35. [35]
    C. Pliangos, I.V. Yentekakis, X. Verykios and C.G Vayenas, J. Catal.154, 124(1995).CrossRefGoogle Scholar
  36. [36]
    S. Bebelis and C.G. Vayenas, J. Catal.118, 125 (1989).CrossRefGoogle Scholar
  37. [37]
    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.97, 8845 (1993).CrossRefGoogle Scholar
  38. [38]
    M. Makri, C. G. Vayenas, S. Bebelis, K. H. Besocke and C. Cavalca, Surf.Sci.369, 351 (1996).CrossRefGoogle Scholar
  39. [39]
    I.R. Harkness and R.M. Lambert, J. Catal.152, 211 (1995).CrossRefGoogle Scholar
  40. [40]
    S. Ladas, S. Bebelis and C.G. Vayenas, Surf. Sci.251/252, 1062 (1991).CrossRefGoogle Scholar
  41. [41]
    G. Pacchioni, F. Illas, S. Neophytides and C.G. Vayenas, J. Phys. Chem.100, 16653 (1996).CrossRefGoogle Scholar
  42. [42]
    M. Boudart, J. Am. Chem. Soc.74, 3556 (1952).Google Scholar
  43. [43]
    S. Neophytides and C. G. Vayenas, J. Phys. Chem.99, 17063 (1995).CrossRefGoogle Scholar
  44. [44]
    I.V. Yentekakis and S. Bebelis, J. Catal.137, 278 (1992)CrossRefGoogle Scholar
  45. [45]
    J.R. Anderson and K.C. Pratt “Introduction to characterization and testing of catalysts”, Academic Press, New York, 1985Google Scholar
  46. [46]
    K. Yiokari and S. Bebelis, J. Catal., submitted (1998)Google Scholar
  47. [47]
    H. Conrad, G. Ertl, J. Küppers, J. Latta and E.E. Latta, Surf. Sci.65, 235(1977);65, 245 (1977)Google Scholar
  48. [48]
    M. Peuckert, J. Phys. Chem.89, 2481 (1985).CrossRefGoogle Scholar
  49. [49]
    Légaré, L. Hilaire, G. Maire, G. Krill, and A. Amamou, Surf. Sci.107, 533 (1981).CrossRefGoogle Scholar
  50. [50]
    M. Stoukides, J. Appl. Electrochem.25, 899 (1995).CrossRefGoogle Scholar
  51. [51]
    P. Tsiakaras and C.G. Vayenas, J. Catal.140, 53 (1993) and references therein.CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1998

Authors and Affiliations

  • A. Giannikos
    • 1
  • A. D. Frantzis
    • 1
  • C. Pliangos
    • 1
  • S. Bebelis
    • 1
  • C. G. Vayenas
    • 1
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations