Ionics

, Volume 7, Issue 4–6, pp 247–263 | Cite as

Grain boundary diffusion metals versus non-stoichiometric compounds

  • Y. Mishin
  • W. Gust
Article

Abstract

This paper compares the current knowledge of grain boundary diffusion in three classes of materials: metals and metallic alloys, ordered intermetallic compounds, and ionic stoichiometric and non-stoichiometric compounds. Along with fundamentals, the recent progress in grain boundary diffusion studies in these materials is reviewed. The differences and common features of grain boundary diffusion in these materials are pointed out, and the origin of the differences is examined. It is concluded that, despite many differences, the basic features of grain boundary diffusion in metals, intermetallics and ionics are fairly similar. Those basic features are discussed through the paper, and some prospective topics of future research in the area are suggested.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Kaur, Y. Mishin and W. Gust, Fundamentals of Grain and Interphase Boundary Diffiusion, Wiley, Chichester, 1995.Google Scholar
  2. [2]
    I. Kaur, W. Gust and L. Kozma, Handbook of Grain and Interphase Boundary Diffusion Data, Ziegler, Stuttgart, 1989.Google Scholar
  3. [3]
    A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials, Clarendon Press, Oxford, 1995.Google Scholar
  4. [4]
    Y. Mishin, Chr. Herzig, J. Bernardini and W. Gust, Int. Mater. Rev.42, 156 (1997).Google Scholar
  5. [5]
    Y. Mishin and Chr. Herzig, Mater. Sci. Eng. A260, 55 (1999).Google Scholar
  6. [6]
    Chr. Herzig and Y. Mishin, in: Diffusion in Condensed Matter, Vieweg, Wiesbaden, 1998, p. 90.Google Scholar
  7. [7]
    A. Atkinson, J. Physique46, C4, 379 (1985).Google Scholar
  8. [8]
    J.C. Fisher, J. Appl. Phys.22, 74 (1951).CrossRefGoogle Scholar
  9. [9]
    D. Turnbull and R.E. Hoffman, Acta Metall.2, 419 (1954).Google Scholar
  10. [10]
    R.E. Hoffman, Acta Metall.4, 97 (1956).Google Scholar
  11. [11]
    T. Suzuoka, Trans. Japan Inst. Metals2, 25 (1961).Google Scholar
  12. [12]
    T. Suzuoka, J. Phys. Soc. Japan19, 839 (1964).Google Scholar
  13. [13]
    B.S. Bokshtein, I.A. Magidso and I.L. Svetlov, Phys. Met. Metallogr.6, 81 (1958).Google Scholar
  14. [14]
    G.B. Gibbs, Phys. Status Solidi16, K 27 (1966).Google Scholar
  15. [15]
    L.S. Darken and R.W. Gurry, Physical Chemistry of Metals, McGraw-Hill, New York, 1953.Google Scholar
  16. [16]
    J. Bernardini and G. Martin, Scripta Metall.10, 833 (1976).Google Scholar
  17. [17]
    J. Bernardini, P. Gas, E.D. Hondros and M.P. Seah, Proc. Royal Soc. Lond. A379, 159 (1982).Google Scholar
  18. [18]
    J. Bernardini, Defect Diff. Forum66–69, 667 (1989).Google Scholar
  19. [19]
    J. Bernardini and P. Gas, Defect Diff. Forum96–98, 393 (1993).Google Scholar
  20. [20]
    R.T.P. Whipple, Phil. Mag.45, 1225 (1954).Google Scholar
  21. [21]
    H.S. Levine and C.J. MacCallum, J. Appl. Phys.31, 595 (1960).CrossRefGoogle Scholar
  22. [22]
    A.D. Le Claire, Brit. J. Appl. Phys.14, 351 (1963).Google Scholar
  23. [23]
    D. Wolf and S. Yip, Editors, Materials Interfaces. Atomic-level Structure and Properties, Chapman Hall, London, 1992.Google Scholar
  24. [24]
    J. Sommer and Chr. Herzig, J. Appl. Phys.72, 2758 (1992).CrossRefGoogle Scholar
  25. [25]
    P. Gas, D.L. Beke and J. Bernardini, Phil. Mag Lett.65, 133 (1992).Google Scholar
  26. [26]
    L.G. Harrison, Trans. Faraday Soc.57, 1191 (1961).CrossRefGoogle Scholar
  27. [27]
    E.W. Hart, Acta Metall.5, 597 (1957).Google Scholar
  28. [28]
    N.A. Gjostein, in: Diffusion, Amer. Soc. Metals, Metals Park, OH, 1974, p. 241.Google Scholar
  29. [29]
    A.M. Brown and M.F. Ashby, Acta Metall.28, 1085 (1980).Google Scholar
  30. [30]
    W. Gust, S. Mayer, A. Bögel and B. Predel, J. Physique46, C4, 537 (1985).Google Scholar
  31. [31]
    T. Surholt, Chr. Minkwitz and Chr. Herzig, Acta Mater.46, 1849 (1998).Google Scholar
  32. [32]
    Chr. Herzig, J. Geise and Y. Mishin, Acta Metall. Mater.41, 1683 (1993).Google Scholar
  33. [33]
    T. Surholt, Y. Mishin and Chr. Herzig, Phys. Rev. B50, 3577 (1994).CrossRefGoogle Scholar
  34. [34]
    T. Surholt and Chr. Herzig, Mater. Sci. Forum207–209, 481 (1996).Google Scholar
  35. [35]
    Y. Mishin and I.M. Razumovskii, Acta Metall. Mater.40, 839 (1992).Google Scholar
  36. [36]
    F. Güthoff, Y. Mishin and Chr. Herzig, Z. Metallkd.84, 584 (1993).Google Scholar
  37. [37]
    M. Köppers, Y. Mishin and Chr. Herzig, Acta Metall. Mater.42, 2859 (1994).Google Scholar
  38. [38]
    M. Köppers, Y. Mishin and Chr. Herzig, Scripta Metall. Mater.32, 1113 (1995).Google Scholar
  39. [39]
    I.M. Razumovskii, Y. Mishin and Chr. Herzig, Mater. Sci. Eng. A212, 45 (1996).Google Scholar
  40. [40]
    E. Budke, Chr. Herzig, S. Prokofjev and L.S. Shvindlerman, Mater. Sci. Forum207–209, 465 (1996).Google Scholar
  41. [41]
    E. Budke, T. Surholt, S.I. Prokofjev, L.S. Shvindlerman, and Chr. Herzig, Acta Mater.47, 385 (1999).CrossRefGoogle Scholar
  42. [42]
    T. Surholt, D. Molodov and Chr. Herzig, Acta Mater.46, 5345 (1998).Google Scholar
  43. [43]
    C. Minkwitz, Chr. Herzig, E. Rabkin and W. Gust, Acta Mater.47, 1231 (1999).CrossRefGoogle Scholar
  44. [44]
    Q. Ma, C.L. Liu, J.B. Adams and R.W. Balluffi, Acta Metall. Mater.41, 143 (1993).Google Scholar
  45. [45]
    C.L. Liu and S.J. Plimpton, Phys. Rev. B51, 4523 (1995).Google Scholar
  46. [46]
    Y. Mishin and Chr. Herzig, Phil. Mag. A71, 641 (1995).Google Scholar
  47. [47]
    Y. Mishin, Phil. Mag. A72, 1589 (1995).Google Scholar
  48. [48]
    Y. Mishin, Defect Diff. Forum143–147, 1357 (1997).Google Scholar
  49. [49]
    M.N. Barber and B.W. Ninham, Random and Restricted Walks, Gordon and Breach, New York, 1970Google Scholar
  50. [50]
    Y. Mishin and D. Farkas, in: Interfacial Engineering for Optimized Properties, volume 458, Mater. Res. Soc. Symp. Proceedings, Warrendale, PA, 1997, p. 21.Google Scholar
  51. [51]
    J. Bernardini and P. Gas, Defect Diff. Forum143–147, 1343 (1997).Google Scholar
  52. [52]
    S. Frank, J. Rüsing and Chr. Herzig, Intermetallics4, 601 (1996).CrossRefGoogle Scholar
  53. [53]
    Zs. Tôkei, J. Bernardini and D.L. Beke, Acta Mater.47, 1371 (1999).CrossRefGoogle Scholar
  54. [54]
    J.C. Ciccariello, S. Poize and P. Gas, J. Appl. Phys.67, 3315 (1990).CrossRefGoogle Scholar
  55. [55]
    J. Gülpen, PhD thesis, Technical University of Eindhoven, 1995, cited from Ref. [51].Google Scholar
  56. [56]
    T. Barge, P. Gas and F. M. d'Heurle, J. Mater. Res.10, 1134 (1995).Google Scholar
  57. [57]
    R. Hahnel, W. Miekeley and H. Wever, Phys. Status Solidi (a)97, 181 (1986).Google Scholar
  58. [58]
    T.B. Massalski, Editor-in-Chief, Binary Alloy Phase Diagrams, volume 1, ASM Int., Materials Park, OH, 1986.Google Scholar
  59. [59]
    H. Graupner, L. Hammer, K. Heinz and D.M. Zehner, Surf. Sci.380, 335 (1997).CrossRefGoogle Scholar
  60. [60]
    R. Besson, M. Biscondi and J. Morillo, in: Proc. Inter. Conf. on Intergranular and Interphase Boundaries in Materials98, Prague, July 6–8, 1998.Google Scholar
  61. [61]
    V.T. Borisov, V.M. Golikov and G.V. Scherbedinsky, Phys. Met. Metallogr.17, 80 (1964).Google Scholar
  62. [62]
    D. Gupta, Metall. Trans. A8, 1431 (1977).Google Scholar
  63. [63]
    M. Yan, V. Vitek and G.J. Ackland, in: Ordered Intermetallics — Physical Metallurgy and Mechanical Behaviour, (C.T. Liu, R.W. Cahn and G. Sauthoff, Eds.) Kluwer, Dordrecht, 1992, p. 335.Google Scholar
  64. [64]
    Y. Mishin and D. Farkas, Phil. Mag. A70, 187 (1997).Google Scholar
  65. [65]
    M. Koiwa, in: Ordered Intermetallics — Physical Metallurgy and Mechanical Behaviour, (C.T. Liu, R.W. Cahn, and G. Sauthoff, Eds.) Kuwer, Dordrecht, 1992, p. 433.Google Scholar
  66. [66]
    Y.A. Chang and J.P. Neumann, Prog. Solid State Chem.14, 221 (1982).CrossRefGoogle Scholar
  67. [67]
    Y. Mishin and Chr. Herzig, Acta Mater48, 589 (2000).CrossRefGoogle Scholar
  68. [68]
    M. Hagen and M.W. Finnis, Phil. Mag. A77, 447 (1998).CrossRefGoogle Scholar
  69. [69]
    R.S.C. Smart and J. Nowotny, editors, Ceramic Interfaces. Properties and Applications, IOM Communications, London, 1998.Google Scholar
  70. [70]
    L.-C. Dufour and J. Nowotny, editors, External and Internal Surfaces in Metal Oxides, Trans Tech Publ., Aedermannsdorf, 1988.Google Scholar
  71. [71]
    J. Nowotny and L.-C. Dufour, editors, Surface and Near-Surface Chemistry of Oxide Materials, Elsevier, Amsterdam, 1988.Google Scholar
  72. [72]
    A. Atkinson, Solid State Ionics12, 309 (1984).CrossRefGoogle Scholar
  73. [73]
    A. Atkinson, Solid State Ionics28–30, 1377 (1988).Google Scholar
  74. [74]
    A. Atkinson and C. Monty, in: Surfaces and Interfaces of Ceramic Materials, (L.-C. Dufour, C. Monty and G. Petot-Ervas, Eds.) Kluwer, Dodrecht, 1988, p. 273.Google Scholar
  75. [75]
    C. Monty and A. Atkinson, Cryst. Latt. Def. and Amorph. Mater.18, 97 (1989).Google Scholar
  76. [76]
    M. Dechamps and F. Barbier, in: Science of Ceramic Interfaces, (J. Nowotny, Ed.) Elsevier, Amsterdam, 1991, p. 323.Google Scholar
  77. [77]
    D.M. Duffy and P.W. Tasker, Phil. Mag. A50, 143 (1984).Google Scholar
  78. [78]
    R.E. Mistler and R.L. Coble, J. Appl. Phys.45, 1507 (1974).CrossRefGoogle Scholar
  79. [79]
    M.F. Yan, R.M. Cannon, H.K Bowen and R.L. Coble, J. Amer. Ceram. Soc.60, 120 (1977).Google Scholar
  80. [80]
    A. Atkinson and R.I. Taylor, Phil. Mag. A43, 979 (1981).Google Scholar
  81. [81]
    Z. Adamczyk and J. Nowotny, J. Phys. Chem. Solids47, 11 (1986).Google Scholar
  82. [82]
    J. Maier, J. Europ. Ceram. Soc.19, 675 (1999).CrossRefGoogle Scholar
  83. [83]
    V.C. Stubican and J.W. Osenbach, Solid State Ionics12, 375 (1984).CrossRefGoogle Scholar
  84. [84]
    J.W. Osenbach and V.C. Stubican, J. Amer. Ceram. Soc.66, 191 (1983).Google Scholar
  85. [85]
    J. Philibert, Atom Movements — Diffusion and Mass Transport in Solids, Les Editions de Physique, Les Ulis, 1991.Google Scholar
  86. [86]
    A. Atkinson and R.I. Taylor, Phil. Mag. A39, 581 (1979).Google Scholar
  87. [87]
    A. Atkinson, F.C.W. Pummery and C. Monty, in: Transport in Stoichiometric Compounds, (G. Simkovitch and V. S. Stubican, Eds.) Plenum, New York, 1985, p. 359.Google Scholar
  88. [88]
    A. Atkinson, D.P. Moon, D.W. Smart and R.I. Taylor, J. Mater. Sci.21, 1747 (1986).CrossRefGoogle Scholar
  89. [89]
    F. Barbier, C. Monty and M. Dechamps, Phil. Mag. A58, 475 (1988).Google Scholar
  90. [90]
    L.B. Harris, R.I. Taylor and A. Atkinson, J. Mater. Sci.22, 1993 (1987).CrossRefGoogle Scholar
  91. [91]
    F. Barbier, J. Bernardini, F. Moya and M. Dechamps, in: Materials Science Research (A. Pask and A.G. Evans, Eds.) Plenum, New York, 1987, p. 549.Google Scholar
  92. [92]
    W.K. Chen and N.L. Peterson, J. Amer. Ceram. Soc.63, 566 (1980).Google Scholar
  93. [93]
    A. Atkinson and R.I. Taylor, J. Phys. Chem. Solids47, 316 (1986).Google Scholar
  94. [94]
    K. Kowalski, E.-G. Moya and J. Nowotny, J. Phys. Chem. Solids67, 153 (1996).Google Scholar
  95. [95]
    V.S. Stubican and L.R. Carinci, Z. f. Physik. Chem.207, 215 (1998).Google Scholar
  96. [96]
    C.M. Lin and V.S. Stubican, J. Amer. Ceram. Soc.76, 557 (1990).Google Scholar
  97. [97]
    A.T. Chadwick and R.I. Taylor, Solid State Ionics12, 343 (1984).CrossRefGoogle Scholar
  98. [98]
    A.A. Moosa, S.J. Rothman and L.J. Nowicki, Oxidation of Metals24, 115 (1985).Google Scholar
  99. [99]
    A. Atkinson, D.W. Smart and R.I. Taylor, Werkst. u. Korros.38, 704 (1987).Google Scholar
  100. [100]
    J.L. Routbort and H.J. Matzke, J. Amer. Ceram. Soc.68, 81 (1975).Google Scholar
  101. [101]
    D.M. Duffy and P.W. Tasker, Phil. Mag. A47, 818 (1983).Google Scholar
  102. [102]
    P.W. Tasker and D.M. Duffy, Phil. Mag. A47, L45 (1983).Google Scholar
  103. [103]
    D.M. Duffy and P.W. Tasker, J. Appl. Phys.66, 971 (1984).Google Scholar
  104. [104]
    D.M. Duffy, J. Phys. C: Solid State Phys.19, 4393 (1986).CrossRefGoogle Scholar
  105. [105]
    T. Karakasidis and M Meyer, Phys. Rev. B55, 13853 (1997).CrossRefGoogle Scholar
  106. [106]
    J.H. Harding and D.J. Harris, Phys. Rev. B63, art. no. 094102 (2001).Google Scholar
  107. [107]
    D.J. Harris, J.H. Harding and G.W. Watson, Acta Mater.48, 3039 (2000).CrossRefGoogle Scholar
  108. [108]
    D.J. Harris, G.W. Watson and S.C. Parker, Amer. Mineralogist84, 139 (1999)Google Scholar
  109. [109]
    D.J. Harris, G.W. Watson and S.C. Parker, Amer. Mineralogist84, 139 (1999).Google Scholar

Copyright information

© IfI - Institute for Ionics 2001

Authors and Affiliations

  • Y. Mishin
    • 1
  • W. Gust
    • 2
  1. 1.School of Computational SciencesGeorge Mason UniversityFairfaxUSA
  2. 2.Institut für MetallkundeUniversity of StuttgartStuttgartGermany

Personalised recommendations