Entomophaga

, Volume 20, Issue 1, pp 23–30 | Cite as

Predation by the desert pupfish,Cyprinodon macularius onCulex mosquitoes and benthic chironomid midges

  • E. F. Legner
  • R. A. Medved
  • W. J. Hauser
Article

Abstract

Predation ofCulex mosquitoes and chironomid midges was demonstrated byCyprinodon maculariusBaird & Girard in two types of shallow ponds. In large ponds (5.5×2.6 m) with fish, all mosquito breeding ceased 4 weeks after introduction ofC. macularius. A significant, density-dependent reduction of several chironomid biotypes was sustained, although an increase was evident for other chironomid biotypes. Fish biomass increased 2.43 fold in 76 days in m2 ponds and 23.22 fold in 70 days in larger ponds. Behavioral studies showedC. macularius capable of feeding effectively on mosquitoes in floating algal mats. The desert pupfish deserves serious attention in the biological-integrated control of medically important aquatic arthropods, and may possess attributes making it a preferred, ecologically adapted substitute forGambusia affinis (Baird & Girard) in certain habitats.

Résumé

Dans deux types d'étangs peu profonds, on a démontré queCyprinodon maculariusBaird & Girard était prédateur de moustiquesCulex et de Chironomides. Dans les grands étangs (5,5×2,6 m) empoissonnés, la reproduction des moustiques cesse 4 semaines après l'introduction deC. macularius. Une réduction significative, dépendante de la densité de population de plusieurs biotypes de Chironomides, a été maintenue, bien qu'une augmentation d'autres biotypes de Chironomides ait été observée. La biomasse de poisson a augmenté de 2,43 fois en 76 jours dans les étangs de 1 m2 et de 23,22 fois en 70 jours dans des étangs plus grands. Des études de comportement ont montré queC. macularius était capable de se nourrir efficacement de moustiques dans des tapis d'algues flottantes. Les espèces indigènes deCyprinodon méritent une attention sérieuse du point de vue de la lutte biologique intégrée contre les arthropodes aquatiques d'importance médicale. Elles peuvent présenter des caractères plus intéressants et être mieux adaptées écologiquement que leGambusia affinis (Baird & Girard) dans certains habitats.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, G. W. — 1958. High salinity mortality of desert pupfish,Cyprinodon macularius. —Copeia, 1958, 231–32.Google Scholar
  2. — — 1961. Social behavior of the desert pupfish,Cyprinodon macularius, in the field and in the aquarium. —Am. Middl. Natur., 65, 339–59.Google Scholar
  3. Bay, E. C. &Anderson, L. D. — 1965. Studies with the mosquitofish,Gambusia affinis as a chironomid control. —Ann. Entomol. Soc. Am., 59, 150–53.Google Scholar
  4. Brown, J. H. — 1971. The desert pupfish. —Sci. Amer., 225, 104–10, 138.Google Scholar
  5. Brown, J. H. &Feldmeth, C. R. — 1971. Evolution in constant and fluctuating environments: thermal tolerances of desert pup fish (Cyprinodon). —Evolution, 25, 390–98.Google Scholar
  6. Coleman, G. A. — 1929. A biological survey of Salton Sea. —Calif. Fish and Game Comm. 15, 218–27.Google Scholar
  7. Cowles, R. B. — 1934. Notes on the ecology and breeding habits of the desert minnow,Cyprinodon macularius Baird & Girard. —Copeia, 1934, 40–2.Google Scholar
  8. Danielson, T. L. — 1968. Differential predation onCulex pipiens andAnopheles albinanus mosquito larvae by two species of fish (Gambusia affinis andCyprinodon nevadensis) and the effects of simulated reeds on predation. —Ph. D. Thesis, University of California, Riverside. 115 p.Google Scholar
  9. Hoy, J. B., Kauffman, E. E. &O'Berg, A. G. — 1972. A large-scale field test ofGambusia affinis and Chlorpyrifos for mosquito control. —Mosq. News, 32, 161–71.Google Scholar
  10. Hurlbert, S. H., Zedler, J. &Fairbanks, D. — 1972. Ecosystem alteration by mosquitofish (Gambusia affinis) predation. —Science, 175, 639–41.Google Scholar
  11. Kennedy, C. H. — 1916. A possible enemy of the mosquito. —Calif. Fish and Game Comm., 2, 1–4.Google Scholar
  12. Kinne, O. — 1960. Growth, food intake, and food conversion in a euryplastic fish exposed to different temperatures and salinities. —Physiol. Zool., 33, 288–317.Google Scholar
  13. Kinne, O. &Kinne, E. M. — 1962. Rates and development in embryos of a cyprinodont fish exposed to different temperature-salinity-oxygen combinations. —Can. J. Zool., 40, 231–53.Google Scholar
  14. Legner, E. F. &Medved, R. A. — 1973. Influence ofTilapia mossambica (Peters),T. zillii (Gervais) [Cichlidae] andMollienesia latipinna LeSueur [Poeciliidae] on pond populations ofCulex mosquitoes and chironomid midges. —Mosq. News, 33, 354–64.Google Scholar
  15. Lowe, C. H. &Heath, W. G. — 1969. Behavioral and physiological responses to temperature in the desert pupfish,Cyprinodon macularius. —Physiol. Zool., 42, 53–9.Google Scholar
  16. Miller, R. R. — 1948. The cyprinodont fishes of the Death Valley system of eastern California and southwestern Nevada. —Misc. Publ. Mus. Zool. Univ. Mich., 155 p.Google Scholar
  17. — — 1950. Speciation in fishes of the generaCyprinodon andEmpetrichthys, inhabiting the Death Valley region. —Evolution, 4, 155–63.Google Scholar
  18. Miller, R. R. &Pister, E. P. — 1971. Management of the Owens pupfish,Cyprinodon radiosus, in Mono County, California. —Trans. Am. Fisheries Soc., 100, 502–09.Google Scholar
  19. Raney, E. C., Backus, R. H., Crawford, R. W. &Robins, C. R. — 1953. Reproductive behavior inCyprinodon variegatus Lacepede, in Florida. —Zoologica, 38, 97–104.Google Scholar
  20. Snedecor, G. W. &Cochran, W. C. — 1967 Statistical Methods (6th Ed.). —The Iowa State University Press, Ames, Iowa, 593 p.Google Scholar
  21. Taylor, D. W. &Minkley, W. L. — 1966. New world for biologists. —Pacific Discovery, 19, 18–22.Google Scholar

Copyright information

© Le François 1975

Authors and Affiliations

  • E. F. Legner
    • 1
  • R. A. Medved
    • 1
  • W. J. Hauser
    • 1
  1. 1.Division of Biological Control, Department of EntomologyUniversity of CaliforniaRiversideU.S.A.

Personalised recommendations