Advertisement

Entomophaga

, Volume 33, Issue 4, pp 431–434 | Cite as

Biological studies of the flesh flySarcophaga (Parasarcophaga) misera and its effects as a predator of the snailIndoplanorbis exustus

  • B. D. Parashar
  • K. M. Rao
Article

Abstract

Attempts were made to identify a natural predator of the freshwater snailIndoplanorbis exustus, vector of schistosomiasis. Ochterlony's double immunodiffusion technique was used. The flySarcophaga (Parasarcophaga) misera was identified as a predator ofI. exustus. Various aspects of the biology of this fly and its effects as a predator of snailI. exustus were studied in the laboratory. The possible use of the larvae of this fly to controlI. exustus is discussed as an additional control measure to chemical control.

Key-Words

Sarcophaga snail predator Indoplanorbis 

Résumé

Des essais ont été réalisés pour identifier le prédateur naturel de l'escargot d'eau douceIndoplanorbis exustus, vecteur de la schistosomiase.

La technique de la double immuno-diffusion d'Ochterlony a été employée. La moucheSarcophaga (Parasarcophaga) misera a été identifiée comme prédateur d'I. exustus. Des aspects variés de la biologie de cette mouche et ses effets comme prédateur de l'escargotI. exustus ont été étudiés au laboratoire. L'emploi possible de la larve de cette mouche pour lutter contreI. exustus est discuté comme méthode de lutte complémentaire de la lutte chimique.

Mots Clés

Sarcophaga escargot prédateur Indoplanorbis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrewartha, H. G. &Birch, L. C. — 1954. The distribution and abundance of animals. —Univ. of Chicago Press, Chicago.Google Scholar
  2. Berg, G. O. — 1961. Biology of snail killing sciomyzidae (Diptera) of North America and Europe. —Verh. XI. Internat. Kongr. Entomol., Wien, 1960, 1, 197–202.Google Scholar
  3. Boreham, P. F. L. — 1978. Recent developments in serological methods for predator-prey studies. —Symp. Entomol. Soc. Am. Texas., Nov., 28–29.Google Scholar
  4. Cicolani, B. — 1979. The intrinsic rate of natural increase in dung macrochilid mites, predators ofMusca domestica eggs. —Bull. Zool., 46, 171–178.Google Scholar
  5. Gardner, W. A., Shepard, M. &Noblet, R. — 1981. Precipitin test for examining predator prey interactions in soybean fields. —Can. Entomol., 113, 365–369.Google Scholar
  6. Howe, R. W. — 1953. The rapid determination of intrinsic rate of increase of an insect population. —Ann. Appl. Biol., 40, 134.Google Scholar
  7. Malek, E. A. &Cheng, T. C. — 1974. Medical and economic malacology. —Academic Press, New York and London, 398 pp.Google Scholar
  8. Ochterlony, O. — 1962. Diffusion-in-gel methods for immunological analysis II. In: Progress in allergy (Kallos P. &Waksman, B. H., eds.), Vol. VI, pp. 30–154,S. Karger, Basel.Google Scholar
  9. Ritchie, L. S., Paulini, E., Jobin, W. R., Clarke, V. de V. &Higgins, A. E. H. —1973. Chemical controls of snail. In: Epidemiology and control of schistosomiasis (N. Ansari, ed.),S. Karger, Basel, U.S.A., 458–532.Google Scholar
  10. Service, M. W. &Elouard, J. M. — 1980. Serological identification of the predators of the complex ofSimulium damnosum Theobald [Dipt.: Simuliidae] in the Ivory Coast. —Bull. Entomol. Res., 70, 657–663.Google Scholar
  11. Soulsby, E. J. L. — 1982. Helminths, arthropods and protozoa of domesticated animals. —Bailliere Tindall, London.Google Scholar
  12. Talwar, G. P. — 1983. A handbook of practical immunology. —Vikash Publishing House, New Delhi, 32–45 pp.Google Scholar
  13. White, R. A., Aubertin, D. &Smart, John. — 1940. The fauna of British India, Dipera, Vol. VI, FamilyCalliphoridae, Taylor & Francis London, 288 pp.Google Scholar

Copyright information

© Lavoisier Abonnements 1988

Authors and Affiliations

  • B. D. Parashar
    • 1
  • K. M. Rao
    • 1
  1. 1.Department of EntomologyDefence Research & Development EstablishmentGwaliorIndia

Personalised recommendations