, Volume 19, Issue 4, pp 371–389 | Cite as

Some ecological roots of pest control

  • C. B. Huffaker


Development of pest management systems rests on relatively few major ecological principles and these underly the tactics and strategies available. Many are so self-evident that we often ignore their underlying significance. They are (1) the principle of inherent variation in the genetic properties of organisms; (2) the principle that an organism must be adapted to its environment and becomes so through its evolution; (3) the principle that all organisms require adequate nutrition; (4) the principle that to perpetuate their kind organisms must reproduce; (5) the principle that as organisms are born immature they must grow and develop; (6) the principle that life presents various compensations tending to correct for adverse occurrences; (7) the principle that most organisms derive their sustenance from other living organisms (predation); (8) the principle that organisms commonly suffer from depletion of resources by other organisms (competition among the same or different kinds of organisms); (9) the principle that cooperation serves many species well; (10) the principle that organisms must move about and do things (possess mobility and other behavior); and (11) the principle of holism and interactions among factors in ecosystems. Examples are given showing that advances in our knowledge in each of these basic areas are significant in developing ecologically sound pest management systems.


Plant Pathology Basic Area Pest Management Pest Control Ecological Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Dans cet article nous donnons des exemples montrant que contre des insectes nuisibles, toute lutte écologiquement satisfaisante est fondée sur nos progrès dans la connaissance de onze principes fondamentaux d'écologie. Nous discutons les principes concernant la variation génétique, l'adaptation, la nutrition, la reproduction, la croissance et le développement, la compensation vis-à-vis de facteurs adverses, la prédation (y inclus le parasitisme), la compétition, la coopération, la mobilité et les interactions de facteurs dans un système global.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrewartha, H. G. &Birch, L. C. — 1972. The history of insect ecology, In: History of Entomology.R. F. Smith, T. E. Mittler &C. N. Smith, eds. —Annual Reviews, Inc., Palo Alto, California, 229–266.Google Scholar
  2. Birch, L. C. — 1948. The intrinsic rate of natural increase of an insect population. —J. anim. Ecol., 17, 15–26.Google Scholar
  3. Christenson, L. C. &Foote, R. H. — 1960. Biology of fruit flies. —Annu. Rev. Entomol., 5, 171–192.CrossRefGoogle Scholar
  4. Chumakova, B. M. — 1959. Entomophages of San Jose scale in USSR and ways to increase their effectiveness. — (Trans. to English). —Ist Int. Conf. Insect Pathol, and Biol. Control. Prague, 1958, pp. 481–485. (In Russian)Google Scholar
  5. Chumakova, B. M. — 1971. The role of supplementary feeding in increasing the effectiveness of parasitic hymenoptera in the agrobiocenosis. In: Biological methods of protecting fruit and vegetable crops from pests, diseases and weeds as bases for integrated systems. —Summaries of Reports, Min. Agric., USSR. (Trans. from Russian byR. L. Busbey, prepared byW. Klassen, USDA, ARS).Google Scholar
  6. DeBach, P. — 1968. The competitive displacement and coexistent principles. —Annu. Rev. Entomol., 11, 183–212.Google Scholar
  7. — — 1971. The theoretical basis of importation of natural enemies. —Proc. XIII Int. Congr. Entomol., 2, 140–142.Google Scholar
  8. DeBach, P. &Huffaker, C.B. — 1971. Experimental techniques for evaluation of the effectiveness of natural enemies, In: Biological Control. (C. B. Huffaker, ed.) —Plenum Press, New York.Google Scholar
  9. DeBach, P. &Sundby, R. A. — 1963. Competitive displacement between ecological homologues. —Hilgardia, 34, 105–166.Google Scholar
  10. DeBach, P., Huffaker, C. B. & MacPhee, A. W. — In press. Evaluation of the impact of natural enemies. In: Theory and Practice of Biological Control. (C. B. Huffaker & P. S. Messenger eds.). —Academic Press, New York.Google Scholar
  11. Deevey, E. S., Jr. — 1947. Life table for natural populations of animals. —Quart. Rev. Biol., 22, 283–314.Google Scholar
  12. Earle, N. W., Padovani, I., Thompson, M. J. &Robbins, W. E. — 1970. Inhibition of larval development and egg production in the boll weevil following ingestion of ecdysone analogs. —J. econ. Entomol., 63, 1064–1069.Google Scholar
  13. Flaherty, D. L. — 1969. Vineyard trophic complexity and densities of the Willamette mite,Eotetranychus willamettei Ewing [Acarina: Tetranychidae] —Ecology, 50, 911–916.Google Scholar
  14. Fklanders, S. E. — 1958. The role of the ant in the biological control of scale insects in California. —Proc. 10th Int. Congr. Entomol., 4, 579–592.Google Scholar
  15. Georghiou, G. P. — 1972. The evolution of resistance to pesticides. —Annu. Rev. Ecol. and Syst., 3, 133–168.Google Scholar
  16. Hafez, M. &Doutt, R. L. — 1954. Biological evidence of sibling species inAphytis maculicornis (Masi) [Hymenoptera, Aphelinidae]. —Can. Entomol., 86, 90–96.Google Scholar
  17. Hagen, K. S. — 1966. Dependence of the olive fly,Dacus oleae larvae on symbiosis withPseudomonas sarastanoi for the utilization of olive. —Nature, 209, 423–424.Google Scholar
  18. Hagen, K. S., van den Bosch, R. &Dahlsten, D. L. — 1971. The importance of naturally-occurring biological control in the western United States. In: Biological Control (C. B. Huffaker ed.). —Plenum Press, New York, 253–293.Google Scholar
  19. Hassel, M. P. &May, R. M. — 1973. Stability in insect host-parasite models. —J. anim. Ecol., 42, 693–726.Google Scholar
  20. Huffaker, C. B. — 1971 a. The phenomenon of predation and its roles in nature. In: Dynamics of Populations (P. J. den Boer &G. R. Gradwell eds.). —Centre for Agric. Publ. and Doc., Wageningen, 327–343.Google Scholar
  21. Huffaker, C. B. — 1971 b. The ecology of pesticide interference with insect populations. In: Agricultural Chemicals-Harmony or Discord for Food, People and the Environment (J. E. Swift ed.). —Univ. Calif., Div. agric. Sci., 92–104.Google Scholar
  22. Huffaker, C. B. &Kennett, C. E. — 1966. Studies of two parasites of olive scale,Parlatoria oleae (Colvée). IV. Biological control ofParlatoria oleae (Colvée) through the compensatory action of two introduced parasites. —Hilgardia, 37, 283–335.Google Scholar
  23. — 1969. Some aspects of assessing efficiency of natural enemies. —Can. Entomol., 101, 425–447.Google Scholar
  24. Huffaker, C. B. &Laing, J. E. — 1972. Competitive displacement without a shortage of resources? —Res. Popul. Ecol., 14, 1–17.Google Scholar
  25. Huffaker, C. B. &Messenger, P. S. — 1964. The concept and significance of natural control, In: Biological Control of Insect Pests and Weeds. —Reinhold, New York (P. DeBach ed.), 74–117.Google Scholar
  26. Huffaker, C. B., Shea, K. P. &Herman S. G. — 1963. Experimental studies on predation. IV. Complex dispersion and levels of food in an acarine predator prey interaction. —Hilgardia, 34, 305–330.Google Scholar
  27. Huffaker, C. B. &Stinner, R. E. — 1971. The role of natural enemies in pest control programs, In: Entomological Essays to Commemorate the Retirement of ProfessorK. Yasumatsu. —Hokuryukan Publ. Co., Ltd., Tokyo, 335–350.Google Scholar
  28. Kennedy, J. S. — 1972. The emergence of behavior. —J. Aust. Entomol. Soc, 11 168–176.Google Scholar
  29. Leuis, K. — 1967. Influence of wildflowers on parasitism of the tent caterpillar and codling moth. —Can. Entomol, 99, 444–446.Google Scholar
  30. Mech.L. D. — 1974. A new praofile for the wolf. —Natural History, 83, 26–31Google Scholar
  31. Morris, R. F. — 1959. Single factor analysis in population dynamics. —Ecology, 40, 580–588.Google Scholar
  32. Nassar, S. G., Staal, G. B. &Armanious, N. I. — 1973. Effects and control potential of insect growth regulators with juvenile hormone activity on the greenbug. —J. econ. Entomol., 66, 847–850.Google Scholar
  33. Nicholson, A. J. — 1954. Compensatory reactions to stresses and their evolutionary significance. —Aust. J. Zool., 2, 1–8.Google Scholar
  34. Rao, S. V. &DeBach, P. — 1969. Experimental studies on hybridization and sexual isolation between someAphytis species. —Hilgardia, 39, 515–567.Google Scholar
  35. Robbins, W. E. — 1972. Hormonal chemicals for invertebrate pest control. In: Pest Gontrol Strategies for the Future. —Natl. Acad. Sci., Washington, 172–196.Google Scholar
  36. Robbins, W. E., Kaplanis, J. N., Thompson, M. J., Shorting, T. J., Cohen, C. F., &Joyner, S. C. — 1968. Ecdysones and analogs: effects in development and reproduction of insects. —Science, 161, 1158–1160.Google Scholar
  37. Shoemaker, Christine. — 1971. The application of dynamic programming to agricultural ecology. —Dept. Mathematics, Univ. So. Calif., Tech. Rep. No. 71-29, 85 pp.Google Scholar
  38. Shorey, H. H. — 1973. Behavioral responses to insect pheromones. —Annu. Rev. Entomol., 17, 349–380.Google Scholar
  39. Smith, R. F. — 1970. Pesticides: their use and limitations in pest management. In: Concepts of Pest Management. (R. L. Rabb &F. E. Guthrie eds.). —North Carolina State Univ., Raleigh, 103–118.Google Scholar
  40. — — 1972. The impact of the green revolution on plant protection in tropical and subtropical areas. —Bull. entomol. Soc. Am., 17, 7–14.Google Scholar
  41. Stern, V. M., Smith, R. F., van den Bosch, R. &Hagen, K. S. — 1959. The integration of chemical and biological control of the spotted alfalfa aphid. —Hilgardia, 29, 81–101.Google Scholar
  42. Stern, V. M., van den Bosch, R. &Leight, T. F. — 1964. Strip cutting of alfalfa for lygus bug control. —Calif. Agric., 18, 5–6.Google Scholar
  43. Stern, V. M., Adkisson, P. L., Beingolea O. G. & Viktorov, G. A. — In press. Cultural controls. In: Theory and Practice of Biological Control. (C. B. Huffaker & P. S. Messenger eds). —Academic Press, New York.Google Scholar
  44. Strong, R. G. &Diekman, J. — 1973. Comparative effectiveness of fifteen insect growth regulators against several pests of stored products. —J. econ. Entomol., 66, 1167–1173.Google Scholar
  45. Van Emden, H. F. &Williams, G. D. — 1974. Insect stability and diversity in agroecosystems. —Annu. Rev. Entomol., 19, 455–475.CrossRefGoogle Scholar
  46. Varley, G. C. — 1963. The interpretation of change and stability in insect populations. —Proc. R. entomol. Soc. London (Ser. C), 27, 52–57.Google Scholar
  47. Varley, G. C. Gradwell, G. R. &Hassell, M. P. — 1974. Insect population ecology. —Univ. Calif. Press, Berkeley.Google Scholar
  48. Way, M. J. — 1966. The natural environment and integrated methods of pest control. —J. appl. Ecol., 3 (Suppl.), 29–32.Google Scholar
  49. — — 1973. Objectives, methods and scopes of integrated control. —Ecol. Soc. Aust., Mem. 1, 137–152.Google Scholar
  50. Wilson, F. — 1943. The entomological control of St. Johnswort (Hypericum perforatum L.) with special references to the weed in southern France. —Aust. Counc. Sci. & Ind. Res. Bull., 169.Google Scholar
  51. Woodworth, C. B. — 1908. The theory of the parasite control of insect pests. —Science (N. S.), 28, 227–230.Google Scholar
  52. Worthman, S. — 1968. Toward the conquest of hunger. In: Strategy for the Conquest of Hunger. —Proc. Symp. Rockefeller Found, 2–3.Google Scholar

Copyright information

© Le François 1974

Authors and Affiliations

  • C. B. Huffaker
    • 1
  1. 1.Division of Biological Control, Department of Entomological SciencesUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations