Advertisement

Entomophaga

, Volume 18, Issue 3, pp 305–315 | Cite as

Nosema whitei, a microsporidan pathogen of some species ofTribolium

IV. The effect of temperature, humidity and larval age on pathogenicity forT. castaneum
  • R. J. Milner
Mémoires Originaux

Abstract

The pathogenicity ofNosema whitei was studied using a dose-mortality technique; larvae ofTribolium castaneum were reared for the duration of each experiment in flour mixed with known numbers of spores. The susceptibility of each of the first 5 larval instars was compared. The LD50 (for mortality after 20 days) increased consistently from the first instar (1.8×106 spores/g) to the fifth instar (1.0×1010 spores/g). The slopes of the probit lines increased consistently as age increased (from b=1.1 to b=3.9). Two factors which reduce the development time ofT. castaneum, high temperature and high humidity, both reduced the pathogenicity ofN. whitei. Thus pathogenicity decreased as the temperature was increased fram 25°C (LD50=4.2×106) through 30°C (LD50=1.3×107) to 35°C (LD50=3.2×106), also pathogenicity decreased consistently as humidity was increased fram 10%, through 30, 50, 70% to 90% R.H. Adults, emerging fromNosema free larvae, became infected only when exposed to a very high dose (2×1010 spores/g for 14 days from the day of emergence). Infected larvae were treated for 1 hr. at 45°C in an attempt to cure the infection. The infected larvae were not cured, rather the treatment had an adverse alfect on their survival.

Keywords

Development Time Plant Pathology High Humidity Larval Instar Infected Larva 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

La pathogénicité deNosema whitei a été étudiée en élevant des larves deT. castaneum dans de la farine mélangée à des quantités connues de spores. La sensibilité des larves diminue uniformément en fonction de l'âge; La DL50 varie de 1,8×106/g (1er stade) à 1,0×1010 spores/g (5e stade). Deux facteurs, qui accélèrent le développement deT. castaneum, des températures et des humidités élevées, réduisent tous les deux la pathogénicité deN. whitei.

Les adultes ne peuvent être infectés qu'en les exposant à la dose extrêmement élevée de 2×1010 spores/g.

Un traitement par la chaleur (45°C pendant une heure) n'a pas réussi à guérir les larves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashford, R. W.—1970. Some relationships between the red flour beetle,Tribolium castaneum (Herbst) [Col., Tenebrionidae] andLymphotropha tribolii Ashford [Protozoa, Neogregarinidae, Schizocystidae].—Acta Protozool.,7, 513–529.Google Scholar
  2. Burnside, E. F. &Revell, I.—1948. Observations onNosema disease in bees.—J. econ. Ent.,41, 603–608.Google Scholar
  3. Canning, E. U.—1962. The pathogenicity ofNosema locustae.—J. Insect Physiol.,4, 237–247.Google Scholar
  4. George, C. R.—1971. The effects of malnutrition on growth and mortality of the red rust flour beetleTribolium castaneum [Coleoptera: Tenebrionidae] parasitized byNosema whitei [Microsporidia: Nosematidae].—J. Inverteb. Pathol.,18, 383–388.Google Scholar
  5. Helms, T. J. &Raun, E. S.—1971. Perennial laboratory culture or disease-free insects. In Microbial Control of Insects and Mites, (Burges, H. D. &Hussey, N. W. ed.),Academic Press, New York & London, pp. 639–654.Google Scholar
  6. Howe, R. W.—1956. The effect of temperature and humidity on the rate of development and mortality ofTribolium castaneum (Herbst) [Coleoptera, Tenebrionidae].—Ann. appl. Biol.,44, 356–368.Google Scholar
  7. ——1968. Changes in weight during development in two stored products beetles.—J. stored Prod. Res.,4, 213–220.Google Scholar
  8. Huger, A.—1960. Untersuchungen zur Pathologie einer Mikrosporidiose vonAgrotis segetum, verursacht durchNosema perezioides n. sp.—Z. PflKrankh. (PflPath. PflSchutz),67, 65–77.Google Scholar
  9. ——1964. Entwicklungskreis und Pathologie einer Mikrosporidiosis durchNosema melolonthae (Krieg) comb. nov. bei Engerlingen vonMelolontha melolontha (L) [Col. Melolonthidae].—Entomophaga, Mem. Hors Serie,2, 83–90.Google Scholar
  10. Kramer, J. P.—1968. On microsporidian diseases of noxious invertebrates.—Proc. Joint U.S.-Japan Sem. on Microbial Contr. of Insect Pests, Fukuoka (1967), 135–138.Google Scholar
  11. Litchfield, J. T. &Wilcoxon, F.—1949. A simplified method for evaluating dose effect experiments.—J. Pharmac. Exp. Ther.,95, 99–113.Google Scholar
  12. Lotmar, R.—1944. Ueber den Einfluss der Temperatur, auf den ParasitenNosema apis.—Beih. Schweiz. Bienenzta.,1, 68–80.Google Scholar
  13. Milner, R. J.—1972 a.Nosema whitei, a microsporidan pathogen of some species ofTribolium. I. Morphology, life cycle and generation time.—J. Invertebr. Pathol.,19, 231–238.Google Scholar
  14. ——1972 b.Nosema whitei, a microsporidan pathogen of some species ofTribolium. III. Effect onT. castaneum.—J. Invertebr. Pathol.,19, 248–255.Google Scholar
  15. Raun, E. S.—1961. Elimination of microsporidiosis in laboratory reared European corn borer by the use of heat.—J. Insect Pathol.,3, 446–448.Google Scholar
  16. Reynolds, D. G.—1970. Laboratory studies of the microsporidianPleistophora culicis (Weiser) infectingCulex pipiens fatigans.Wied.—Bull. ent. Res.,60, 339–349.Google Scholar
  17. Roth, M. &Willis, E. R.—1951. Hygroreceptors in the adult ofTribolium [Coleoptera: Tenebrionidae].—J. exp. Zool.,116, 527–570.CrossRefPubMedGoogle Scholar
  18. Solomon, M. E.—1951. Control of humidity with potassium hydroxide, sulphuric acid, or other solutions.—Bull. ent. Res.,42, 543–554.Google Scholar
  19. Weiser, J.—1969. Immunity of insects to protozoa. In Immunity to Parasitic Animals, (Jackson, G. J., Hermen, R. &Singer, I. ed.) Vol. 1,North Holland, Amsterdam, pp. 129–147.Google Scholar

Copyright information

© Le François 1973

Authors and Affiliations

  • R. J. Milner
    • 1
  1. 1.Department of Agricultural ZoologyUniversity of Newcastle-upon-TyneEngland

Personalised recommendations