Advertisement

Critical current density in railgun accelerators with composite electrodes

  • S. V. Stankevich
  • G. A. Shvetsov
Article
  • 66 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Critical Current Density Composite Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Hawke and J. K. Scudder, “Magnetic propulsion railguns: their design and capabilities,” in: Megagauss Physics and Technology: Proc. of 2nd Intern. Conf. on Megagauss Magnetic Fields Generation and Related Topics, New York (1980), pp. 297–311.Google Scholar
  2. 2.
    G. A. Shvetsov, A. G. Anisimov, Yu. L. Bashkatov, and V. P. Chistyakov, “Railgun accelerators of macroparticles. Part 1: General characteristics,” in: Megagauss Technology and Pulsed Power Applications: Proc. of 4th Intern. Conf. on Megagauss Magnetic Field Generation and Related Topics, Santa Fe (1986), pp. 775–794.Google Scholar
  3. 3.
    G. L. Jackson, L. K. Farria, and M. M. Tower, “Electromagnetic railgun extended-life bore material test results,” in: Proc. of 3rd Symposium on Electromagnetic Launch Technology, Austin (1986), pp. 378–381.Google Scholar
  4. 4.
    J. T. Harding, R. B. Kaplan, H. O. Pierson, et al., “Chemically vapor deposited materials for railguns,” in: Proc. of 3rd Symposium on Electromagnetic Launch Technology, Austin (1986), pp. 392–395.Google Scholar
  5. 5.
    J. E. Shrader, A. J. Bohn, and J. G. Thompson, “Railgun experimental results due to varying bore and arc materials, and varying the number of barrel turns,” in: Proc. of 3rd Symposium on Electromagnetic Launch Technology, Austin (1986), pp. 277–281.Google Scholar
  6. 6.
    M. A. Bykov, N. T. Dzhigailo, V. M. Nesterenko, et al., “Experimental determination of the ablation coefficient of electrodes of railgun accelerators,” in: Proc. of 2nd All-Union Seminar on Dynamics of High-Power Arc Discharge in a Magnetic Field, Novosibirsk (1991).Google Scholar
  7. 7.
    D. L. Vrable, S. N. Rosenwasser, and J. A. Korican, “Design and fabrication of an advanced, lightweight, high stiffness, railgun barrel concept,” IEEE Trans. Magn.,MAG-27, No. 1, 470–475 (1991).Google Scholar
  8. 8.
    G. A. Shvetsov, A. G. Anisimov, S. V. Stankevich, et al., “Interaction between plasma piston and railgun electrodes,” in: Proc. 8th of IEEE Intern. Pulsed Power Conf., San Diego (1991), pp. 771–777.Google Scholar
  9. 9.
    J. D. Powell, “Thermal-energy transfer from arc to rails in arc-driven railgun,” IEEE Trans. Magn.,MAG-20, No. 2, 395–398 (1984).ADSGoogle Scholar
  10. 10.
    G. S. Belkin and V. Ya. Kiselev, “On the selection of the average/mean values of the thermophysical parameters in calculating thermal processes at contacts,” Trans. of MEI, High-Voltage Engineering, Vol. 144 (1972), pp. 83–85.Google Scholar
  11. 11.
    J.-M. Charrier, “Basic aspects of structure-property relationships for composites,” Polym. Eng. Sci.,15, No. 10, 731–746 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. V. Stankevich
  • G. A. Shvetsov

There are no affiliations available

Personalised recommendations