Geologische Rundschau

, Volume 85, Issue 3, pp 554–566 | Cite as

Late Quaternary sediment dating and quantification of lateral sediment redistribution applying230Thex: a study from the eastern Atlantic sector of the Southern Ocean

  • M. Frank
  • A. Mangini
  • R. Gersonde
  • M. Rutgers van der Loeff
  • G. Kuhn
Original Paper


High-resolution records of the natural radionuclide230Th were measured in sediments from the eastern Atlantic sector of the Antarctic circumpolar current to obtain a detailed reconstruction of the sedimentation history of this key area for global climate change during the late Quaternary. High-resolution dating rests on the assumption that the230Thex flux to the sediments is constant. Short periods of drastically increased sediment accumulation rates (up to a factor of 8) were determined in the sediments of the Antarctic zone during the climate optima at the beginning of the Holocene and the isotope stage 5e. By comparing expected and measured accumulation rate of230Thex, lateral sediment redistribution was quantified and vertical particle rain rates originating from the surface water above were calculated. We show that lateral contributions locally were up to 6.5 times higher than the vertical particle rain rates. At other locations only 15% of the expected vertical particle rain rate were deposited.

Key words

High-resolution dating 230Thex constant flux models Sediment focusing Sediment winnowing Particle flux reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelmann A, Gersonde R (1988) Cycladophora davisiana stratigraphy in Plio/Pleistocene sediment cores from the Antarctic Ocean (Atlantic sector). Micropaleontology 34:268–276Google Scholar
  2. Abelmann A, Gersonde R (1991) Biosiliceous particle flux in the Southern Ocean. Mar Chem 35:503–536Google Scholar
  3. Anderson RF, Bacon MP, Brewer PG (1983) Removal of230Th and231Pa from the open ocean. Earth Planet Sci Lett 62:7–23CrossRefGoogle Scholar
  4. Bacon MP (1984) Glacial to interglacial changes in carbonate and clay sedimentation in the Atlantic estimated from thorium-230 measurements. Isot Geosci 2:97–111Google Scholar
  5. Bard E (1988) Correction of accelerator mass spectrometry14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3:635–645Google Scholar
  6. Bard E, Hamlin B, Fairbanks RG, Zindler A (1990) Calibration of the14C timescale over the past 30000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–410CrossRefGoogle Scholar
  7. Bathmann U, Schulz-Baldes M, Fahrbach E, Smetacek V, Hubberten H-W (1992) Die Expeditionen ANTARKTIS-IX/1–4 des Forschungsschiffes “Polarstern” 1990/91. Ber Polarforsch 100:1–403Google Scholar
  8. Burckle LH, Cooke DW (1983) Late Pleistocene Eucampia antarctica abundance stratigraphy in the Atlantic sector of the Southern Ocean. Micropaleontology 29:6–10Google Scholar
  9. Charles CD, Froelich PN, Zibello A, Mortlock RA, Morley JJ (1991) Biogenic opal in Southern Ocean sediments over the last 450 000 years: implications for surface water chemistry and circulation. Paleoceanography 6:697–728Google Scholar
  10. Fischer G, Bohrmann G, Gersonde R (in preparation) The Late Quaternaryδ 13C record in the Antarctic circumpolar current (eastern Atlantic sector): paleoceanographic implicationsGoogle Scholar
  11. Francois R, Bacon MP, Suman D (1990) Thorium 230 profiling in deep-sea sediments: high-resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24 000 years. Paleoceanography 5:761–787Google Scholar
  12. Francois R, Bacon MP, Altabet MA, Labeyrie LD (1993) Glacial/interglacial changes in sediment rain rate in the SW Indian sector of Subantarctic waters as recorded by230Th,231Pa, U, andδ 15N. Paleoceanography 8:611–629Google Scholar
  13. Frank M, Eckhardt J-D, Eisenhauer A, Kubik PW, Dittrich-Hannen B, Mangini A (1994) Beryllium 10, thorium 230 and protactinium 231 in Galapagos microplate sediments: implications for hydrothermal activity and paleoproductivity changes during the last 100 000 years. Paleoceanography 9:559–578CrossRefGoogle Scholar
  14. Frank M, Eisenhauer A, Bonn WJ, Walter P, Grobe H, Kubik PW, Dittrich-Hannen B, Mangini A (1995) Sediment redistribution versus paleoproductivity change: Weddell Sea Margin sediment stratigraphy for the last 250 000 years deduced from230Thex,10Be and biogenic barium profiles. Earth Planet Sci Lett 136:559–573CrossRefGoogle Scholar
  15. Gersonde R (1993) Die Expedition ANTARKTIS X/5 mit FS “Polarstern” 1992. Ber Polarforsch 131:1–167Google Scholar
  16. Gersonde R, Hempel G (1990) Die Expeditionen ANTARKTIS VIII/3 und VIII/4 mit FS “Polarstern” 1989. Ber Polarforsch 74:1–173Google Scholar
  17. Gersonde R, Zielinski U (in preparation) Significance of diatoms as indicators of past Antarctic sea ice extentGoogle Scholar
  18. Gersonde R, Abelmann A, Bohrmann G, Frank M, Heinemeier J, Rutgers van der Loeff MM, Niebler H-S, Mangini A, Rud N, Zielinski U (in preparation) Southern Ocean paleoenvironmental changes during the last 20 000 years (Atlantic sector)Google Scholar
  19. Hays JD (1967) Quaternary sediments of the Antarctic Ocean. Prog Oceanogr 4:117–131Google Scholar
  20. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132Google Scholar
  21. Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of the Pleistocene climate: support from a revised chronology of the marineδ 18O record. In: Berger AL et al. (eds) Milankovitch and climate, part 1. Riedel, Hingham, Massachusetts, pp 269–305Google Scholar
  22. Kumar N (1994) Trace metals and natural radionuclides as tracers of ocean productivity. Ph.D. thesis, Columbia University, New York, pp 1–317Google Scholar
  23. Mackensen A, Grobe H, Hubberten H-W, Kuhn G (1994) Benthic foraminiferal assemblages and theδ 13C signal in the Atlantic sector of the Southern Ocean: glacial-to-interglacial contrasts. In: Zahn R et al. (eds) Carbon cycling in the glacial ocean: constraints on the ocean’s role in global change. NATO ASI series, vol I 17, pp 105–144Google Scholar
  24. Mangini A, Diester-Haass L (1983) Excess230Th in N.W. African sediments traces upwelling in the past. In: Suess E, Thiede J (eds) Coastal upwelling: its sediment record. NATO Conf Ser, Ser IV 10a, pp 455–470Google Scholar
  25. Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC Jr, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300 000 year chronostratigraphy. Quaternary Res 27:1–29CrossRefGoogle Scholar
  26. McCave N (1983) Particulate size spectra, behavior and origin of nepheloid layers over the Nova Scotian continental rise. J Geophys Res 88:7647–7666Google Scholar
  27. Niebler HS (1995) Rekonstruktion von Paläo-Umweltparametern anhand von stabilen Isotopen und Faunenvergesellschaftungen planktischer Foraminiferen im Südatlantik. Ber Polarforsch 167:198Google Scholar
  28. Nürnberg CC, Bohrmann G, Frank M, Schlüter M, Suess E (in preparation) Barium accumulation in the Atlantic sector of the Southern Ocean: evidence for productivity changes during the last 190 000 yearsGoogle Scholar
  29. Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanogr 26:1–73CrossRefGoogle Scholar
  30. Pudsey C (1992) Late Quaternary changes in Antarctic bottom water velocity inferred from sediment grain size in the northern Weddell Sea. Mar Geol 107:9–33CrossRefGoogle Scholar
  31. Rutgers van der Loeff MM, Berger GW (1991) Scavenging and particle flux: seasonal and regional variations in the Southern Ocean (Atlantic sector). Mar Chem 35:553–567Google Scholar
  32. Rutgers van der Loeff MM, Berger GW (1993) Scavenging of230Th and231Pa near the Antarctic polar front in the South Atlantic. Deep-Sea Res I 40:339–357Google Scholar
  33. Scholten JC, Botz R, Paetsch H, Stoffers P (1994)230Thex flux into Norwegian-Greenland Sea sediments: evidence for lateral sediment transport during the past 300 000 years. Earth Planet Sci Lett 121:111–124CrossRefGoogle Scholar
  34. Sea Ice Climatic Atlas, vol 1, Antarctica (1985) Naval Oceanography Command Detachment, Ashville, North Carolina, pp 1–131Google Scholar
  35. Suman DO, Bacon MP (1989) Variations in Holocene sedimentation in the North American basin determined from230Th measurements. Deep-Sea Res 36:869–878CrossRefGoogle Scholar
  36. Van Bennekom AJ, Berger GW, Van der Gaast SJ, DeVries RTP (1988) Primary productivity and the silica cycle in the southern ocean (Atlantic sector). Paleogeogr Paleoclimatol Paleoecol 67:19–30Google Scholar
  37. Vogelsang E (1990) Paläozeanographie des Europäischen Nordmeeres anhand von stabilen C. und O-Isotopen. Ber Sonderforschungsber 313 (23): 136Google Scholar
  38. Yang YL, Elderfield H, Ivanovich M (1990) Glacial to Holocene changes in the carbonate and clay sedimentation in the equatorial pacific Ocean estimated from230Th profiles. Paleoceanography 5:789–809Google Scholar
  39. Zielinski U (1993) Quantitative Bestimmung von Paläoumweltparametern des Antarktischen Oberflächenwassers im Spätquartär anhand von Transferfunktionen mit Diatomeen. Ber Polarforsch 126:1–148Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. Frank
    • 1
  • A. Mangini
    • 1
  • R. Gersonde
    • 2
  • M. Rutgers van der Loeff
    • 2
  • G. Kuhn
    • 2
  1. 1.Heidelberger Akademie der Wissenschaften, INF 366HeidelbergGermany
  2. 2.Alfred-Wegener-Institut für Polar- und Meeresforschung, ColumbusstrasseBremerhavenGermany

Personalised recommendations