Advertisement

Annals of Biomedical Engineering

, Volume 20, Issue 1, pp 63–80 | Cite as

Right ventricular-pulmonary arterial interactions

  • William G. Kussmaul
  • Abraham Noordergraaf
  • Warren K. Laskey
Article

Abstract

The application of pulsatile models to hemodynamic data has made possible a more complete understanding of the relationship of pulmonary pressure and flow. To review the genesis of these concepts, the unique characteristics of the pulmonary artery and right ventricle are outlined as a basis for understanding why differences in their pulsatile properties from the systemic circuit must exist. The pulmonary impedance spectrum is introduced and the concept of optimal right ventricular-pulmonary artery coupling is explored based on a review of extensive experimental data. Finally, available studies of normal pulmonary impedance in man and abnormal impedance in human disease states are reviewed, with emphasis on disturbances in optimal ventricular-vascular coupling. The important implications of these concepts for understanding and treatment of cardiovascular disease are developed.

Keywords

Pulmonary impedance Right ventricle function Ventricular-vascular coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altschuler, J.A.; Laskey, W.K.; Herrmann, H.C.; Kussmaul W.G. Tachycardia alters right ventricular-vascular coupling in mitral stenosis. Circulation 78:II-125; 1988.Google Scholar
  2. 2.
    Arani, D.T.; Carleton, R.A. The deleterious role of tachycardia in mitral stenosis. Circulation 86:511–516; 1967.Google Scholar
  3. 3.
    Bergel, D.H.; Milnor, W.R. Pulmonary vascular impedance in the dog. Circ. Res. 16:401–415; 1965.PubMedGoogle Scholar
  4. 4.
    Caro, C.G.; McDonald, D.A. The relation of pulsatile pressure and flow in the pulmonary vascular bed. J. Physiol. 157:426–453; 1961.PubMedGoogle Scholar
  5. 5.
    Elkins, R.C.; Milnor, W.R. Pulmonary vascular response to exercise in the dog. Circ. Res. 29:591–599; 1971.PubMedGoogle Scholar
  6. 6.
    Engelberg, J.; Dubois, A.B. Mechanics of pulmonary circulation in isolated rabbit lungs. Am. J. Physiol. 196:401–414; 1959.PubMedGoogle Scholar
  7. 7.
    Gurtner, H.P.; Walser, P.; Fassler, B. Normal values for pulmonary hemodynamics at rest and during exercise in man. Prog. Resp. Res. 9:295–315; 1975.Google Scholar
  8. 8.
    Haneda, T.; Nakajima, T.; Shirato, K.; Onodera, S.; Takishima, T. Effects of oxygen breathing on pulmonary vascular input impedance in patients with pulmonary hypertension. Chest. 83:520–526; 1983.PubMedGoogle Scholar
  9. 9.
    Hopkins, R.A.; Hammon, J.W.; McHale, P.A.; Smith, P.K.; Anderson, R.W. An analysis of the pulsatile hemodynamic responses of the pulmonary circulation to acute and chronic pulmonary venous hypertension in the awake dog. Circ. Res. 47:902–910; 1980.PubMedGoogle Scholar
  10. 10.
    Janicki, J.S.; Weber, K.T.; Likoff, M.J.; Fishman, A.P. The pressure-flow response of the pulmonary circulation in patients with heart failure and pulmonary vascular disease. Circulation 72:1270–1278; 1985.PubMedGoogle Scholar
  11. 11.
    Kussmaul, W.G.; Wieland, J.M.; Laskey, W.K. Pressure flow relations in the pulmonary artery during myocardial ischemia: Implications for right ventricular function in coronary artery disease. Cardiovasc. Res. 22:627–638; 1988.PubMedGoogle Scholar
  12. 12.
    Laskey, W.K.; Kussmaul, W.G.; Martin, J.L.; Kleaveland, J.P.; Hirshfeld, J.W.; Shroff, S. Characteristics of vascular hydraulic load in patients with heart failure. Circulation 72:61–71; 1985.PubMedGoogle Scholar
  13. 13.
    Laskey, W.K.; Kussmaul, W.G. Arterial wave reflection in heart failure. Circulation 75:711–721; 1987.PubMedGoogle Scholar
  14. 14.
    Lucas, C.L.; Radke, N.F.; Wilcox, B.R.; Henry, G.W.; Keagy, B.A. Maturation of pulmonary input impedance spectrum in infants and children with ventricular septal defect. Am. J. Cardiol. 57:821–827; 1986.CrossRefPubMedGoogle Scholar
  15. 15.
    Mills, C.J.; Gabe, I.T.; Gault, J.H.; Mason, D.T.; Ross, J., Jr.; Braunwald, E.; Shillingford, J.P. Pressure-flow relationships and vascular impedance in man. Cardio. Res. 4:405–417; 1970.Google Scholar
  16. 16.
    Milnor, W.R.; Bergel, D.H.; Bargainer, J.D. Hydraulic power associated with pulmonary blood flow and its relation to heart rate. Circ. Res. 19:467–480; 1966.PubMedGoogle Scholar
  17. 17.
    Milnor, W.R.; Conti, C.R.; Lewis, K.B.; O'Rourke, M.F. Pulmonary artery pulse wave velocity and impedance in man. Circ. Res. 25:637–649; 1969.PubMedGoogle Scholar
  18. 18.
    Milnor, W.R. Arterial impedance as ventricular afterload. Circ. Res. 36:565–570; 1975.PubMedGoogle Scholar
  19. 19.
    Morrison, D.; Sorensen, S.; Caldwell, J.; Wright, A.L.; Ritchie, J.; Kennedy, J.W.; Hamilton, G. The normal right ventricular response to supine exercise. Chest. 6:686–691; 1982.Google Scholar
  20. 20.
    Murgo, J.P.; Altobelli, S.A.; Dorethy, J.F.; Logsdon, J.R.; McGranahan, G.M. Normal ventricular ejection dynamics in man during rest and exercise. Am. Heart Assoc. Monog. 46:92–101; 1975.Google Scholar
  21. 21.
    Murgo, J.P.; Westerhof, N.; Giolma, J.P.; Altobelli, S.A. Aortic input impedance in normal man: Relationship to pressure wave forms. Circulation 62:105–115; 1980.PubMedGoogle Scholar
  22. 22.
    Murgo, J.P.; Westerhof, N.; Giolma, J.P.; Altobelli, S.A. Effects of exercise on aortic input impedance and pressure wave forms in normal humans. Circ. Res. 48:334–343; 1981.PubMedGoogle Scholar
  23. 23.
    Murgo, J.P.; Westerhof, N. Input impedance of the pulmonary arterial system in normal man. Circ. Res. 54:666–673; 1984.PubMedGoogle Scholar
  24. 24.
    O'Rourke, M. Vascular impedance in studies of arterial and cardiac function. Physiol. Rev. 62:570–623; 1982.PubMedGoogle Scholar
  25. 25.
    Pace, J.B. Sympathetic control of pulmonary vascular impedance in anesthetized dogs. Circ. Res. 29:555–568; 1971.PubMedGoogle Scholar
  26. 26.
    Pace, J.B.; Cox, R.H.; Alvarez-Vara, F.; Karreman, G. Influence of sympathetic nerve stimulation on pulmonary hydraulic input power. Am. J. Physiol. 222:196–201; 1972.PubMedGoogle Scholar
  27. 27.
    Pasipoularides, A. Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. J. Am. Coll. Cardiol. 15:859–882; 1990.PubMedGoogle Scholar
  28. 28.
    Patel, D.J.; DeFreitas, F.M.; Fry, D.L. Hydraulic input impedance to aorta and pulmonary artery in dogs. J. Appl. Physiol. 18:134–140; 1963.PubMedGoogle Scholar
  29. 29.
    Piene, H. The influence of pulmonary blood flow rate on vascular input impedance and hydraulic power in the sympathetically and noradrenaline stimulated cat lung. Act. Physiol. Scand. 98:44–53; 1976.Google Scholar
  30. 30.
    Piene, H.; Sund, T. Flow and power output of right ventricle facing load with variable input impedance. Am. J. Physiol. 237:H125-H130; 1979.PubMedGoogle Scholar
  31. 31.
    Piene, H. Interaction between the right heart ventricle and its arterial load: A quantitative solution. Am. J. Physiol. 238:H932-H937; 1980.PubMedGoogle Scholar
  32. 32.
    Piene, H.; Sund, T. Does normal pulmonary impedance constitute the optimum load for the right ventricle? Am. J. Physiol. 242:H154-H160; 1982.PubMedGoogle Scholar
  33. 33.
    Piene, H. Right ventricular function in relation to pulmonary arterial impedance. In: Suga, K.; Baan, J.; Yellin, E., eds: Cardiac mechanics and function in the normal and diseased heart. New York: Springer-Verlag; 1989: pp. 211–224.Google Scholar
  34. 34.
    Pollack, G.H.; Reddy, R.V.; Noordergraaf, A. Input impedance, wave travel and reflections in the human pulmonary arterial tree: Studies using an electrical analog. Trans. Biomed. Eng. BME 15:151–164; 1968.Google Scholar
  35. 35.
    Pouleur, H.; Lefevre, J.; van Eyll, C.; Jaumin, P.M.; Charlier, A.A. Significance of pulmonary input impedance in right ventricular performance. Cardio. Res. 12:617–629; 1978.Google Scholar
  36. 36.
    Reuben, S.R.; Kitchin, A.H.. Pulmonary artery input impedance in pulmonary hypertension. Prog. Resp. Res. 9:261–266; 1975.Google Scholar
  37. 37.
    Reuben, S.R.; Swadling, J.P.; Gersh, B.J.; Lee, G. Impedance and transmission properties of the pulmonary arterial system. Cardiovasc. Res. 5:1–9; 1971.Google Scholar
  38. 38.
    Stanek, V.; Widimsky, J.; Degre, S.; Denolin, H. The lesser circulation during exercise in healthy subjects. Prog. Resp. Res. 9:1–9; 1975.Google Scholar
  39. 39.
    Vanden Bos, G.C.; Westerhof, N.; Randall, O.S. Pulse wave reflection: Can it explain the differences between systemic and pulmonary pressure and flow waves? Circ. Res. 51:479–485; 1982.PubMedGoogle Scholar
  40. 40.
    Westerhof, N.; Sipkema, P.; Van Den Bos, G.C.; Elzinga, C. Forward and backward waves in the arterial system. Cardio. Res. 6:648–656; 1972.Google Scholar
  41. 41.
    Wiener, F.; Morkin, E.; Skalak, R.; Fishman, A.P. Wave propagation in the pulmonary circulation. Circ. Res. 19:834–850; 1966.PubMedGoogle Scholar

Copyright information

© Pergamon Press plc 1992

Authors and Affiliations

  • William G. Kussmaul
    • 1
    • 2
  • Abraham Noordergraaf
    • 1
    • 2
  • Warren K. Laskey
    • 1
    • 2
  1. 1.Cardiology Section, Department of MedicineUniversity of Pennsylvania School of MedicineUSA
  2. 2.Cardiovascular Studies Unit, Department of BioengineeringUniversity of pennsylvaniaPhiladelphia

Personalised recommendations