Advertisement

Helgoländer Meeresuntersuchungen

, Volume 49, Issue 1–4, pp 283–293 | Cite as

Trophic interactions between zooplankton andPhaeocystis cf.globosa

  • F. C. Hansen
Visiting Scientists at the Biologische Anstalt Helgoland (History and Specific Results)

Abstract

Mesozooplankton grazing onPhaeocystis cf.globosa was investigated by laboratory and field studies. Tests on 18 different species by means of laboratory incubation experiments, carried out at the Biologische Anstalt Helgoland, revealed thatPhaeocystis was ingested by 5 meroplanktonic and 6 holoplanktonic species; filtering and ingestion rates of the latter were determined. Among copepods, the highest feeding rates were found forCalanus helgolandicus andTemora longicornis. Copepods fed on all size-classes ofPhaeocystis offered (generally 4–500 μm equivalent spherical diameter [ESD]), but they preferred the colonies. FemaleC. helgolandicus and femaleT. longicornis preferably fed on larger colonies (ESD>200 μm and ESD>100 μm, respectively. However, a field study, carried out in the Marsdiep (Dutch Wadden Sea) showed phytoplankton grazing by the dominant copepodTemora longicornis to be negligible during thePhaeocystis spring bloom.T. longicornis gut fluorescence was inversely related toPhaeocystis dominance. The hypothesis has been put forward thatT. longicornis preferentially feeds on microzooplankton and by this may enhance rather than depressPhaeocystis blooms. Results from laboratory incubation experiments, including three trophic levels —Phaeocystis cf.globosa (algae),Strombidinopsis sp. (ciliate) andTemora longicornis (copepod) — support this hypothesis.

Keywords

Waste Water Phytoplankton Field Study Ingestion Rate Trophic Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Admiraal, W. & Venekamp, L. A. H., 1986. Significance of tintinnid grazing during blooms ofPhaeocystis pouchetii (Haptophycea) in Dutch coastal waters. — Neth. J. Sea Res.20, 61–66.Google Scholar
  2. Baars, M. A. & Fransz, H. G., 1984. Grazing pressure of copepods on the phytoplankton stock of the central North Sea. — Neth. J. Sea Res.18, 120–142.Google Scholar
  3. Barnard, W. R., Meinrat, O. A. & Iverson, R. L., 1984. Dimethylsulfide andPhaeocystis pouchetii in the southeastern Bering Sea. — Cont. Shelf Res.3, 103–113.CrossRefGoogle Scholar
  4. Bautista, B., Harris, R. P., Tranter, P. R. G. & Harbour, D., 1992. In-situ copepod feeding and grazing rates during a spring bloom dominated byPhaeocystis sp. in the English Channel. — J. Plankt. Res.14, 691–703.Google Scholar
  5. Boekel, W. H. M. van, Hansen, F. C., Riegmann, R. & Bak, R., 1992. Lysis induced decline of thePhaeocysti bloom in the Marsdiep area of the North Sea and coupling with the microbial food chain. — Mar. Ecol. Prog. Ser.81, 269–276.Google Scholar
  6. Cadée, G. C., 1990. Increased bloom (Note). — Nature, Lond.346, 418.CrossRefGoogle Scholar
  7. Claustre, H., Poulet, S. A., Williams, R., Marty, J.-C., Coombs, S., Ben Mlih, F., Hapette, A. M. & Martin-Jezequel, V., 1990. A biochemical investigation of aPhaeocystis sp. bloom in the Irish Sea. — J. mar. biol. Ass. U.K.70, 197–207.Google Scholar
  8. Daan, R., Gonzalez, S. R. & Klein Breteler, W. C. M., 1988. Cannibalism in omnivorous calanoid copepods. — Mar. Ecol. Prog. Ser.47, 45–54.Google Scholar
  9. Dam, H. G. & Peterson, W. T., 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. — J. exp. mar. Biol. Ecol.123, 1–14.CrossRefGoogle Scholar
  10. Eberlein, K., Leal, M. T., Hammer, K. D. & Hickel, W., 1985. Dissolved organic substances during a densePhaeocystis pouchetii bloom in the German Bight (North Sea). — Mar. Biol.89, 311–316.CrossRefGoogle Scholar
  11. Estep, K. W., Nejstgaard, J. C., Skjoldal, H. R. & Rey, F., 1990. Predation by copepods upon natural populations ofPhaeocystis pouchetii as a function of the physiological state of the prey. — Mar. Ecol. Prog. Ser.67, 235–249.Google Scholar
  12. Fransz, H. G., Colebrook, J. M., Gamble, J. C. & Krause, M., 1991. The zooplankton of the North Sea. — Neth. J. Sea Res.28, 1–52.Google Scholar
  13. Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepodCalanus pacificus. — Limnol. Oceanogr.17, 805–815.Google Scholar
  14. Guillard, R. R. L. & Ryther, J. H., 1962. Studies of marine planktonic diatoms. I.Cyclotella nana Hustedt andDetonula confervacea Cleve. Gran. — Can. J. Microbiol.8, 229–239.PubMedGoogle Scholar
  15. Hansen, F. C., 1992. Zooplankton Grazing anPhaeocystis mit besonderer Berücksichtigung der calanoiden Copepoden. Diss., Univ. Kiel, Ber. Inst. Meeresk. Kiel 229, 137 pp.Google Scholar
  16. Hansen, F. C. & van Boekel, W. H. M., 1991. Grazing pressure of the calanoid copepodTemora longicornis on aPhaeocystis dominated spring bloom in a Dutch tidal inlet. — Mar. Ecol. Prog. Ser.78, 123–129.Google Scholar
  17. Hansen, F. C., Reckermann, M., Klein Breteler, W. C. M. & Riegman, R., 1993.Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar. Ecol. Prog. Ser.102, 51–57.Google Scholar
  18. Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H., 1965. Fluorometric determination of chlorophyll. — J. Cons. perm. int. Explor. Mer.30, 3–15.Google Scholar
  19. Joiris, C., Billen, G., Lancelot, C., Daro, M.H., Mommaerts, J. P., Bertels, A., Bossicart, M. & Nijs, J., 1982. A budget of carbon cycling in the Belgian coastal zone: relative roles of zooplankton, bacterioplankton and benthos in the utilization of primary production. — Neth. J. Sea Res.16, 260–275.Google Scholar
  20. Keller, M. D., 1988. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. — Biol. Oceanogr.6, 375–382.Google Scholar
  21. Klein Breteler, W. C. M., 1980. continuous breeding of marine pelagic copepods in the presence of heterotrophic dinoflagellates. — Mar. Ecol. Prog. Ser.2, 229–233.Google Scholar
  22. Klein Breteler, W. C. M. & Gonzalez, S. R., 1988. Influence of temperature and food concentration on body size, weight and lipid content of two calanoid copepod species. — Hydrobiologia167/168, 201–210.Google Scholar
  23. Klein Breteler, W. C. M., Schogt, N. & Gonzalez, S. R., 1990. On the role of food quality in grazing and development of life stages, and genetic change of body size during cultivation of pelagic copepods. — J. exp. mar. Biol. Ecol.135, 177–189.Google Scholar
  24. Lancelot, C., Billen, G., Sournia, A., Weisse, T., Colijn, F., Veldhuis, M. J. W., Davies, A. & Wassmann, P., 1987.Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. — Ambio16, 38–46.Google Scholar
  25. Mackas, D. & Bohrer, R., 1976. Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. — J. exp. mar. Biol. Ecol.25, 77–85.CrossRefGoogle Scholar
  26. Nicolajsen, H., Møhlenberg, F. & Kiørboe, T., 1983. Algal grazing by the planktonic copepodsCentropages hamatus andPseudocalanus sp.: diurnal and seasonal variation during the spring phytoplankton bloom in the Øresund. — Ophelia22, 15–31.Google Scholar
  27. Omori, M., 1969. Weight and chemical composition of some important oceanic zooplankton in the north Pacific Ocean. — Mar. Biol.3, 4–10.CrossRefGoogle Scholar
  28. Smetacek, V., 1975. Die Sukzession des Phytoplankton in der westlichen Kieler Bucht. Diss., Univ. Kiel, 151 pp.Google Scholar
  29. Sokal, R. R. & Rohlf, F. J., 1981. Biometry. Freeman, San Francisco, 859 pp.Google Scholar
  30. Stoecker, D. K. & McDowell Capuzzo, J., 1990. Predation on protozoa: its importance to zooplankton. — J. Plankt. Res.12, 891–908.Google Scholar
  31. Strathmann, R. R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. — Limnol. Oceanogr.12, 411–418.Google Scholar
  32. Tande, K. S. & Båmstedt, U., 1985. Grazing rates of the copepodsCalanus glacialis andC. finmarchicus in arctic waters of the Barents Sea. — Mar. Biol.87, 251–258.CrossRefGoogle Scholar
  33. Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. — Mitt. int. Verein. theor. angew. Limnol.9, 1–38.Google Scholar
  34. Veldhuis, M. J. W., Colijn, F. & Venekamp, L. A. H., 1986. The spring bloom ofPhaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. — Neth. J. Sea Res.20, 37–48.Google Scholar
  35. Weisse, T., Tande, K. S., Verity, P. G., Hansen, F. C. & Gieskes, W. W. C., 1994. The trophic significance ofPhaeocystis blooms. — J. mar. Systems5, 67–79.Google Scholar
  36. Weisse, T. & Scheffel-Möser, U., 1990. Growth and grazing loss rates in single-celledPhaeocystis sp. (Prymnesiophyceae). — Mar. Biol.106, 153–158.CrossRefGoogle Scholar
  37. Wiadnyana, N. N. & Rassoulzadegan, F., 1989. Selective feeding ofAcartia clausi andCentropages typicus on microzooplankton. — Mar. Ecol. Prog. Ser.53, 37–45.Google Scholar

Copyright information

© Biologische Anstalt Helgiland 1995

Authors and Affiliations

  • F. C. Hansen
    • 1
  1. 1.Netherlands Institute for Sea ResearchAB Den BurgThe Netherlands

Personalised recommendations