Advertisement

Annals of Biomedical Engineering

, Volume 20, Issue 4, pp 451–462 | Cite as

A barycentremetric study of the sagittal shape of spine and pelvis: The conditions required for an economic standing position

  • G. Duval-Beaupère
  • C. Schmidt
  • P. Cosson
Article

Abstract

The standing posture of 17 young men and women were studied using Barycentremeter measurements and full spine radiograph with a single referential system. These procedures provide in vivo measurements of the weight and center of weight supported by each vertebra and the coxofemoral joints. The relationship between the vertebra, the sacrum or the coxofemoral rotation axis and the center of weight they support, is displayed. The moment of the corresponding force may also be assessed. Mean values were computed and the relation with spine sagittal curves and pelvic parameters were studied. The position of the center of weight, in front of or behind the vertebra or the coxofemoral joints, requires an opposing muscle force to ensure mechanical stability. The load exerted on the vertebra cannot be precisely evaluated, but we can describe the way in which these loads vary when the spinal curves and the pelvic slope change. This study provides basic data suggesting that there is a tendency to maintain the body in the most economical position in terms of muscle fatigue and vertebral strain. Individual anatomical shapes and pelvic parameters of the pelvis induce corresponding specific sagittal curves of the spine. This concept is very useful for analysing pathological situations and devising appropriate treatment.

Keywords

Spine Pelvis Morphology Gravitational parameters Posture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akerblom, B. Standing and sitting posture. Vol. 1, Stockholm: A.B. Nordiska Bokhandelin; 1948; 187 pp.Google Scholar
  2. 2.
    Bonne, A.J. On the shape of the human vertebral column. Acta Orthop. Belg. 35:3–4, 567–583; 1969.Google Scholar
  3. 3.
    Cosson, P.; Desmoineaux, P.; Robain, G.; Duval-Beaupère, G. Valeurs inertielles des segments cortporels supportés par les vertèbres. Jour. Biophy. Biomec. 11 (suppl 1)52–53; 1987.Google Scholar
  4. 4.
    Cosson, P.; Duval-Beaupère, G. Evaluation personnalisée des forces exercées sur les vertèbres dorsales et lombaires de l'homme en position debout et assise. Proceeding Réunion Annuelle du GES, Berck. fev., 1989.Google Scholar
  5. 5.
    Delmas, A. Types rachidiens de statique corporelle. Rev. Morphophysiol. Humaine; 1951.Google Scholar
  6. 6.
    Delmas, A. Attitude érigée et types rachidiens de statique corporelle. In: S.D.M.S., ed. L'Attitude. Paris; 1953: 17–44.Google Scholar
  7. 7.
    Dubousset, J.; Graf, H.; Hecquet, J. Approche tridimensionnelle des déformations rachidiennes. Application à l'étude du pronostic des scolioses infantiles. In Proceeding Annual Meeting Scoliosis Research Society and Rev. Chir. Orthop. 83:69, 407–416; 1980.Google Scholar
  8. 8.
    During, J.; Goudfrooij, H.; Keessen, W. Toward standards for posture. Spine 10:1, 83–87; 1985.PubMedGoogle Scholar
  9. 9.
    Duval-Beaupère, G. Le Barycentremètre, le point de la validation Clinique. Journées d'information électronique du C.E.N.; 1975.Google Scholar
  10. 10.
    Duval-Beaupère, G. La ligne de gravité vue de profil chez le sujet normal et dans les déformations antéropostérieures du rachis. Compte rendu de la réunion commune du GES et SRS Canadien. Montréal: Mai, 1979; pp. 30–38.Google Scholar
  11. 11.
    Duval-Beaupère, G.; Hecquet, J.; Dubousset, J.; Graf, H.; Roche, R.; Tabuteau, C.; Marin, J.; Robain, G.; Cosson, Ph. Centre of the mass supported by each vertebra on a 3-D image of the spine. EEEE/Ninth Annual Conference of the Engineering in Medicine and Biology Society. CH2513-0/87/0000-0844; 1987.Google Scholar
  12. 12.
    Duval-Beaupère, G.; Ovazza, D.; Tisseau, J. Mise au point d'un appareillage de mesure de la masse des segments corporels et de son lieu d'application. Les actions thématiques de l'INSERM, no 6. Physiopathologie de l'artriculation. Paris: INSERM; 1976: pp. 165–177.Google Scholar
  13. 13.
    Duval-Beaupère, G.; Robain, G. Visualization on full spine radiographs of the anatomical connections of the centres of the segmental body mass supported by each vertebra and measuredin vivo. Intern. Orth. (SICOT). 11:261–269; 1987.Google Scholar
  14. 14.
    Duval-Beaupère, G.; Schmidt, C.; Cosson, P. Sagittal shape of the spine and pelvis. The conditions for an economic standing position. Barycentremetric study. Proceedings of the Annual meeting of Scoliosis Research Society combined with the European Spinal Deformity Society. Amsterdam; September 1989.Google Scholar
  15. 15.
    Joseph, J. Man's posture. Electromyographic studies. Vol. 1, Springfield, IL; Thomas; 1960: 88 pp.Google Scholar
  16. 16.
    Joseph, J.; William, P. Electromyography of certain hip muscles. J. Anat. 91:286–294; 1957.PubMedGoogle Scholar
  17. 17.
    King Liu, Y.; Monroe-Laborde, J.; Van Buskirk, W.C. Inertial properties of a segment cadaver trunk: Their implication in acceleration injuries. Aerospacial Med. 42:650–657; 1971.Google Scholar
  18. 18.
    Pascal, A.; Csakvary, S.; Porte, P. Le Barycentremètre MCG10 Notice technique CEA. SES/PUP/SERF: 74-237; 1974.Google Scholar
  19. 19.
    Schultz, A.B. Biomechanical factors in the progression of idiopathic scoliosis. Ann. Biomed. Eng. 12:621–630; 1984.PubMedGoogle Scholar
  20. 20.
    Schultz, A.B.; Ciszewski, D.J.; Dewald, R.L. Spine morphology as a determinant of progression tendency in idiopathic scoliosis. Presented before the Scoliosis Research Society: Boston, MA; 1978.Google Scholar
  21. 21.
    Schultz, A.B.; Sorensen, S.; Anderson, G.B. Measurements of spine morphology in children, ages 10–16. Spine 9:1, 70–73; 1984.PubMedGoogle Scholar
  22. 22.
    Staffel, F. Die menschlichen Haltungstypen und ihre Beziehungen zu den Rückgratsverkrümmungen. Wiesbaden; 1989.Google Scholar
  23. 23.
    Stagnara, P.; de Mauroy, J.C.; Dran, G.; Gonon, G.; Costanzo, G.; Dimnet, J.; Pasquet, A. Reciprocal angulation of vertebral bodies in a sagittal plane: Approach to references for the evaluation of kyphosis and lordosis. Spine 7:4, 335–342; 1984.Google Scholar
  24. 24.
    Tabuteau, C.; Marin, J.; Roche, P.; Hecquet, J.; Duval-Beaupère, G. Connexion d'un micro-ordinateur et du calculateur multi 20 d'un scanner à rayon gamma dit Barycentremètre. Innov. Tech. Biol. Med. 8:6, 635–643; 1987.Google Scholar
  25. 25.
    Vidal, J.; Marnay, Th. Deviation sagittales du rachis, essai de classification en fonction de l'équilibre pelvien. Rev. Chir. Orthop. 70 (Suppl. 2): 124–126; 1983.Google Scholar

Copyright information

© Pergamon Press Ltd. 1992

Authors and Affiliations

  • G. Duval-Beaupère
    • 1
  • C. Schmidt
    • 1
  • P. Cosson
    • 1
  1. 1.Unité 215 de l'INSERMHôpital R. PoincaréGarchesFrance

Personalised recommendations