Advertisement

Annals of Biomedical Engineering

, Volume 22, Issue 5, pp 445–455 | Cite as

1993 Whitaker lecture: Biorheology in thrombosis research

  • J. David Hellums
Invited Review

Abstract

A review is presented on biorheological studies of platelet activation and platelet-platelet binding events that play key roles in thrombosis and hemostasis. Rheological methods have been used by a number of workers to establish the importance of fluid mechanical shear stress as a determinate of platelet reactions. Fluid mechanical shear stress can be regarded as a platelet agonist that is always present in the circulation and that is synergistic in its actions with other agonists. Early biorheological studies were phenomenological in that they focused on stress effects on measures of platelet function. Subsequent studies have elucidated mechanisms and have shown that the biochemical pathways of platelet activation are very different at elevated shear stresses than in the low shear stress environment used in many platelet activation studies. This finding that biochemical pathways of platelet activations are different at different shear stress levels suggests that it may be possible to develop platelet inhibitors of highly specific action: it may be possible to inhibit pathways important in thrombosis in a partially occluded artery without seriously compromising the normal hemostatic function of platelets. Another aspect of the work suggests that the biorheological approach may make it possible to develop better methods for prediction of thrombotic tendencies in human subjects.

Keywords

Platelets Aggregation Blood Hemostasis Shear stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alkhamis, T. M., R. L. Beissinger, and J. Chedian. Effect of red blood cells on platelet adhesion and aggregation in low-stress shear flow.Trans. Am. Soc. Artif. Intern. Org. XXXIII:636–642, 1987.Google Scholar
  2. 2.
    Alkhamis, T. M., R. L. Beissinger, and J. Chedian. Artificial surface effect on red blood cells and platelets in laminar shear flow.Blood 75:1568–1575, 1990.PubMedGoogle Scholar
  3. 3.
    Anderson, G. H., J. D. Hellums, J. L. Moake and C. P. Alfrey, Jr. Platelet lysis and aggregation in shear fields.Blood Cells 4:499–507, 1978.PubMedGoogle Scholar
  4. 4.
    Anderson, G. H., J. D. Hellums, J. Moake, and C. P. Alfrey, Jr. Platelet response to shear stress: changes in serotonin uptake, serotonin release, and ADP induced aggregation.Thromb. Res. 13:1039–1047, 1978.CrossRefPubMedGoogle Scholar
  5. 5.
    Bell, D. N., S. Spain, and H. L. Goldsmith. The ADP-induced aggregation of human platelet in flow through tubes. I. Measurement of the concentration and size of single platelets and aggregates.Biophys. J. 56:817–828, 1989.PubMedGoogle Scholar
  6. 6.
    Belval, T. K., and J. D. Hellums. Analysis of shear-induced platelet aggregation with population balance mathematics.Biophys. J. 50:479–487, 1986.PubMedGoogle Scholar
  7. 7.
    Belval, T. K., J. D. Hellums, and R. T. Solis. The kinetics of platelet aggregation induced by shear stress.Microvasc. Res. 28:279–288, 1984.CrossRefPubMedGoogle Scholar
  8. 8.
    Born, G. V. R. Aggregation of blood platelets by adenosine diphosphate and its reversal.Nature 194:927–934, 1962.PubMedGoogle Scholar
  9. 9.
    Brown, C. H., L. B. Leverett, C. W. Lewis, C. P. Alfrey, and J. D. Hellums. Morphological, biochemical and functional changes in human platelets subjected to shear stress.J. Lab. Clin. Med. 86:462–471, 1975.PubMedGoogle Scholar
  10. 10.
    Brown, C. H. R. F. Lemuth, J. D. Hellums, L. B. Leverett, and C. P. Alfrey. Response of human platelets to shear stress.Trans. Am. Soc. Artif. Int. Org. 21:35–39, 1975.Google Scholar
  11. 11.
    Chow, T. W., J. D. Hellums, J. L. Moake, and M. H. Kroll. Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation.Blood 80:113–120, 1992.PubMedGoogle Scholar
  12. 12.
    Colantuoni, G., J. D. Hellums, J. L. Moake, and C. P. Alfrey, Jr. The response of human platelets to shear stress at short exposure times.Trans. Am. Soc. Artif. Int. Org. XXIII:626–630, 1977.Google Scholar
  13. 13.
    Coller, B. S., E. I. Peerschke L. E. Scudder, and C. A. Sullivan. Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: additional evidence in support of GPIb as a platelet receptor for von Willebrand factor.Blood 61:99–110, 1983.PubMedGoogle Scholar
  14. 14.
    Dewitz, T. S., R. R. Martin, R. T. Solis, J. D. Hellums, and L. V. McIntire. Stress induced platelet aggregation-microaggregate formation in whole blood exposed to shear stress.Microvasc. Res. 16:263–271, 1978.CrossRefPubMedGoogle Scholar
  15. 15.
    Frojmovic, M., T. Wong, and T. Van de Ven. Dynamic measurements of the platelet membrane glycoprotein IIb-IIa receptor for fibrinogen by flow cytometry. I. Methodology, theory and results for two distinct activators.Biophys. J. 59:815–827, 1991.PubMedGoogle Scholar
  16. 16.
    Fukuyama, M., K. Sakai, I. Itagaki, K. Kawano, M. Murata, Y. Kawai, K. Watanabe, M. Handa, and Y. Ikeda. Continuous measurement of shear-induced platelet aggregation.Thromb. Res. 54:253–260, 1989.CrossRefPubMedGoogle Scholar
  17. 17.
    Goldsmith, H. L., J. C. Marlow, and S. K. Yu. The effect of oscillatory flow on the release reaction and aggregation of platelets.Microvasc. Res. 11:355–362, 1976.CrossRefGoogle Scholar
  18. 18.
    Giorgio, T. D., and J. D. Hellums. A cone and plate viscometer for the continuous measurement of blood platelet activation.Biorheology 25:605–624, 1988.PubMedGoogle Scholar
  19. 19.
    Hardwick, R. A., J. D. Hellums, J. L. Moake, and D. M. Peterson. Effects of antiplatelet agents on platelets exposed to shear stress.Trans. Am. Soc. Artif. Int. Org. XXVI:179–184, 1980.Google Scholar
  20. 20.
    Hardwick, R. A., J. D. Hellums, D. M. Peterson, and J. L. Moake. The effects of ASA, PGE1, PGI2, and theophylline, on the response of platelets subjected to shear stress.Blood 58:678–681, 1981.PubMedGoogle Scholar
  21. 21.
    Hellums, J. D., and R. A. Hardwick. Response of platelets to shear stress—a review. In: Hemovascular Rheology: The Physics of Blood and Vascular Tissue, edited by N. H. C. Hwang and D. R. Gross. Amsterdam: Sijthoff and Noorhoff, 1981, pp. 160–183.Google Scholar
  22. 22.
    Hellums, J. D., D. M. Peterson, N. A. Stathopoulos, J. L. Moake, and T. D. Giorgio. Studies on the mechanisms of shear-induced platelet activation. In: Cerebral Ischemia and Hemorheology, edited by A. Hartman and W. Kuschinsky. New York: Springer Verlag, 1987, pp. 80–89.Google Scholar
  23. 23.
    Hoogendijk, E. M., C. S. P. Jenkins, E. M. van Wijk, J. Vos, and J. W. Ten Cate. Spontaneous platelet aggregation in cerebrovascular disease. II. Further characterization of the platelet defect.Thromb. Haem. 41:512–522, 1979.Google Scholar
  24. 24.
    Huang, P. Y., and J. D. Hellums. Aggregation and disaggregation kinetics of human blood platelets. Part I. Development and validation of a population balance method.Biophys. J. 65:334–343, 1993.PubMedGoogle Scholar
  25. 25.
    Huang, P. Y., and J. D. Hellums. Aggregation and disaggregation kinetics of human blood platelets. Part II. Development and validation of a population balance method.Biophys. J. 65:344–353, 1993.PubMedGoogle Scholar
  26. 26.
    Huang, P. Y., and J. D. Hellums. Aggregation and disaggregation kinetics of human blood platelets. Part III. Development and validation of a population balance method.Biophys. J. 65:354–361, 1993.PubMedGoogle Scholar
  27. 27.
    Hung, T. C., R. M. Hochmuth, J. H. Joist, and S. P. Sutera. Shear-induced aggregation and lysis of platelts.Trans. Am. Soc. Artif. Int. Org. XII:285–291, 1976.Google Scholar
  28. 28.
    Ikeda, Y., M. Handa, K. Kawano, T. Kamata, M. Murata, Y. Araki, H. Anbo, Y. Kawai, K. Watanabe, I. Itagaki, K. Sakai, and Z. M. Ruggeri. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress.J. Clin. Invest. 87:1234–1240, 1991.PubMedGoogle Scholar
  29. 29.
    Ikeda, Y., M. Murata, Y. Araki, K. Watanabe, Y. Ando, I. Itagaki, Y. Mori, M. Ichitani, and K. Sakal. Importance of fibrinogen and platelet membrane glycoprotein IIb/IIIa in shear-induced platlet aggregation.Thromb. Res. 51:157–163, 1988.CrossRefPubMedGoogle Scholar
  30. 30.
    Jen, C. J., and L. V. McIntire. Characteristics of shear-induced aggregation in whole blood.J. Lab. Clin. Med. 103:115–124, 1984.PubMedGoogle Scholar
  31. 31.
    Johnston, G. G., U. Marzek, and E. F. Bernstein. Effects of surface injury and shear stress on platelet aggregation and serotonin release.Trans. Am. Soc. Artif. Int. Org. 21:413, 1975.Google Scholar
  32. 32.
    Klose, H. J., H. Rieger, and H. Schmid-Schonbien. A rheological method for the quantification of platelet aggregation (PA)in vitro and its kinetics under defined flow conditions.Thromb. Res. 7:261–272, 1975.CrossRefPubMedGoogle Scholar
  33. 33.
    Kroll, M. H., J. D. Hellums, Z. Guo, W. Durante, J. K. Hrbolich, and A. I. Schafer. Protein kinase C is activated in platelets subjected to pathological shear stress.J. Biol. Chem. 268:3520–3524, 1993.PubMedGoogle Scholar
  34. 34.
    Moake, J. L., N. A. Turner, N. A., Stathopoulos, L. H. Nolasco, and J. D. Hellums. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation.J. Clin. Invest. 78:1456–1461, 1986.PubMedGoogle Scholar
  35. 35.
    Moake, J. L., N. A. Turner, N. A. Stathopoulos, L. Nolasco, and J. D. Hellums. Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin.Blood 71:1366–1374, 1988.PubMedGoogle Scholar
  36. 36.
    Moritz, M. W., S. P. Sutera, and J. H. Joist. Factors influencing shear-induced platelet alterations: platelet lysis is independent of platelet aggregation and release.Thromb. Res. 22:445–455, 1981.CrossRefPubMedGoogle Scholar
  37. 37.
    Moritz, M. W., R. C. Reimers, R. K. Baker, S. P. Sutera, and J. H. Joist. Tole cytoplasmic and releasable ADP in platelet aggregation induced by laminar shear stress.J. Lab. Clin. Med. 101:537–544, 1983.PubMedGoogle Scholar
  38. 38.
    Murata, M., Y. Ikeda, Y. Araki, H. Murakami, K. Sata, M. Yamamoto, K. Watanabe, Y. Ando, T. Igawa, and I. Maruyama. Inhibition by endothelial cells of platelet aggregating activity of thrombin-role of thrombomodulin.Thromb. Res. 50:647–656, 1988.CrossRefPubMedGoogle Scholar
  39. 39.
    Peterson, D. M. N. A. Stathopoulos, J. D. Hellums, and J. L. Moake. Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins Ib and IIb-IIIa.Blood 69:625–628, 1987.PubMedGoogle Scholar
  40. 40.
    Phillips, M. D., J. L. Moake, L. H. Nolasco, and N. A. Turner.Aurin tricarboxylic acid: a novel inhibitor of platelet-von Willebrand factor association.Blood 72:1898–1906, 1988.PubMedGoogle Scholar
  41. 41.
    Rajagopalan, S., L. V. McIntire, E. R. Hall, and K. K. Wu. The stimulation of arachidonic acid metabolism in human platelets by hydrodynamic stresses.Biochim. Biophys. Acta 958:108–115, 1988.PubMedGoogle Scholar
  42. 42.
    Ramstack, J. M., L. Zuckerman, and L. F. Mockros. Shear-induced activation of platelets.J. Biomech. 12:113–125, 1978.Google Scholar
  43. 43.
    Reimers, R. C., S. P. Sutera, and J. H. Joist. Potentiation by red blood cells of shear-induced platelet aggregation: relative importance of chemical and physical mechanisms.Blood 64:1200–1206, 1984.PubMedGoogle Scholar
  44. 44.
    Roschke, E. J., and E. C. Harrison. Fluid shear stress in prosthetic heart valves.J. Biomech. 10:299–311, 1977.CrossRefPubMedGoogle Scholar
  45. 45.
    Shattil, S. J., M. Cunningham, and J. A. Hoxie. Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry.Blood 70:307–315, 1987.PubMedGoogle Scholar
  46. 46.
    Stevens, D. E., J. H. Joist, and S. P. Sutera. Role of platelet-prostaglandin synthesis in shear-induced platelet alterations.Blood 56:753–758, 1980.PubMedGoogle Scholar
  47. 47.
    Strony, J., M. Phillips, D. Brands, J. L. Moake, and B. Adelman. Aurin tricarboxylic acid in a canine model of coronary artery thrombosis.Circulation 81:1106–1114, 1990.PubMedGoogle Scholar
  48. 48.
    Sutera, S. P., M. D. Nowak, J. H. Joist, D. J. Zeffren, and J. E. Bauman. A programmable, computer-controlled coneplate viscometer for the application of pulsatile shear stress to platelet suspensions.Biorheology 25:449–459, 1988.PubMedGoogle Scholar
  49. 49.
    Ten Cate, J. W., J. Vos, H. Oosterhuis, D. Prenger, and C. S. P. Jenkins. Spontaneous platelet aggregation in cerebrovascular disease.Thromb. Haem. 39:223–229, 1978.Google Scholar
  50. 50.
    Tiederman, W. G., M. J. Steinley, W. M. Phillips, and R. M. Privette. Turbulent shear stress from prosthetic heart valves.Trans. Am. Soc. Artif. Int. Org. 31:479–482, 1985.Google Scholar
  51. 51.
    Trip, M. D., V. M. Cats, F. J. L. van Capelle, and J. Vreeken. Platelet hyperreactivity and prognosis in survivors of myocardial.New Engl. J. Med. 322:1449–1454, 1990.Google Scholar
  52. 52.
    Voisin, P., C. Guimont, and J. F. Stoltz. Experimental investigation of the rheological activation of blood platelets.Biorheology 22:425–435, 1985.PubMedGoogle Scholar
  53. 53.
    Weiss, H. J., J. Hawiger, Z. M. Ruggeri, V. T. Turitto, P. Thiagarajan, and T. Hoffmann. Fibrinogen-independent platelet adhesion and thrombus formation on subendothelium mediated by glycoprotein IIb-IIIa complex at high shear rate.J. Clin. Invest. 83:288–297, 1989.PubMedGoogle Scholar
  54. 54.
    Wurzinger, L. J., R. Opitz, P. Blasberg, and H. Schmid-Schonbein. Platelet and coagulation parameters following millisecond exposure to laminal shear stress.Thromb. Haem. 54:381–386, 1985.Google Scholar
  55. 55.
    Wurzinger, L. J., R. Opitz, M. Wolf, and H. Schmid-Schonbein. Shear induced platelet activation—a critical reappraisal.Biorheology 22:399–413, 1985.PubMedGoogle Scholar
  56. 56.
    Wu, K. K., and J. C. Hoak. A new method for the quantitative detection of pH. Aggregates in patients with arterial insufficiency.Lancet 2:924–926, 1974.PubMedGoogle Scholar
  57. 57.
    Wu, K. K., and J. C. Hoak. Spontaneous platelet aggregation in arterial insufficiency: mechanism and implications.Thromb. Haem. 35:702–711, 1976.Google Scholar
  58. 58.
    Wu, K. K., Platelet hyperaggregability and thrombosis in patients with thrombocythemia.Ann. Int. Med. 88:7–11, 1978.PubMedGoogle Scholar
  59. 59.
    Yung, Y., and M. Frojmovic. Platelet aggregation in laminar flow. Part I: adenosine diphosphate concentration, time, and shear rate dependence.Thromb. Res. 28:361–378, 1982.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 1994

Authors and Affiliations

  • J. David Hellums
    • 1
  1. 1.The Cox Laboratory for Biomedical EngineeringRice UniversityHoustonUSA

Personalised recommendations