Helgoländer Meeresuntersuchungen

, Volume 48, Issue 2–3, pp 233–242 | Cite as

Grazing on green algae by the periwinkleLittorina littorea in the Wadden Sea

  • U. Wilhelmsen
  • K. Reise
Article

Abstract

On sedimentary tidal flats in the Wadden Sea near the Island of Sylt, the periwinkleLittorina littorea occurred preferentially on clusters and beds of mussels and on shell beds (100 to 350 m−2), achieved moderate densities on green algal patches or mats (20 to 50 m−2), and remained rare on bare sediments (<5 m−2). Green algae covering>10% of sediment surface appeared in summer on approximately one third of the tidal zone, mainly in the upper and sheltered parts and almost never on mussel and shell beds. In feeding experiments,L. littorea ingested more of the dominant alge,Enteromorpha, than ofUlva, irrespective of whether or not algae were fresh or decaying. The tough thalli ofChaetomorpha were hardly consumed. Snails feeding onEnteromorpha produced fecal pellets from which new growth ofEnteromorpha started. In the absence of periwinkles,Enteromorpha developed on mussels and the attached fucoids. Experimentally increased snail densities on sediments prevented green algal development, but the snails were unable to graze down established algal mats. It is concluded that natural densities ofL. littorea hardly affect the ephemeral mass development of green algae on sediments. However, where the snails occur at high densities, i.e. on mussel beds, green algal development may be prevented.

Literature Cited

  1. Abele-Oeschger, D. & Theede, H., 1991. Digestion of algal pigments by the common periwinkleLittorina littorea I. (Gastropoda). — J. exp. mar. Biol. Ecol.147, 177–184.CrossRefGoogle Scholar
  2. Austen, I., 1990. Geologisch-sedimentologische Kartierung des Königshafens (List auf Sylt) und Untersuchung seiner Sedimente. Dipl.—Arb., Univ. Kiel, 99pp.Google Scholar
  3. Bandel, K., 1974. Studies on Littorinidae from the Atlantic. — Veliger17(2), 92–114.Google Scholar
  4. Bertness, M. D., 1984. Habitat and community modification by an introduced herbivorous snail. — Ecology65 (2), 370–381.Google Scholar
  5. Brenner, D., Valiela, I. & Raalte, C. D. van, 1976. Grazing byTalorchestia longicornis on an algal mat in a New England salt marsh. — J. exp. mar. Biol. Ecol.22, 161–169.CrossRefGoogle Scholar
  6. Cates, R. G. & Orians, G. H., 1975. Successional status and the palatability of plants to generalized herbivores. — Ecology56, 410–418.Google Scholar
  7. Hull, S. C., 1987. Macroalgal mats and species abundance: a field experiment. — Estuar. coast. Shelf Sci.25, 519–532.CrossRefGoogle Scholar
  8. Hylleberg, J. & Henriksen, K., 1980. The central role of bioturbation in sediment mineralization and element re-cycling. — Ophelia (Suppl.)1, 1–16.Google Scholar
  9. Jensen, K. T. & Siegismund, H. R., 1980. The importance of diatoms and bacteria in the diet ofHydrobia-species. — Ophelia (Suppl.)1, 193–199.Google Scholar
  10. Kornmann, P., 1952. Die Algenvegetation von List auf Sylt. — Helgoländer wiss. Meeresunters.4, 55–61.CrossRefGoogle Scholar
  11. Lein, T. E., 1980. The effects ofLittorina littorea L. (Gastropoda) grazing on littoral green algae in the inner Oslo-Fjord, Norway. — Sarsia65, 87–92.Google Scholar
  12. Levinton, J. S. & McCartney, M., 1991. Use of photosynthetic pigments in sediments as a tracer for sources and fates of macrophyte organic matter. — Mar. Ecol. Prog. Ser.78, 87–96.Google Scholar
  13. Linke, O., 1939. Die Biota des Jadebusens. — Helgoländer wiss. Meeresunters.1, 201–348.CrossRefGoogle Scholar
  14. Littler, M. M. & Littler, D. S., 1980. The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. — Am. Nat.116, 25–44.CrossRefGoogle Scholar
  15. Lubchenco, J., 1978. Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. — Am. Nat.112, 23–39.CrossRefGoogle Scholar
  16. Lubchenco, J., 1983.Littorina andFucus: effects of hervibores, substratum heterogeneity, and plant escapes during succession. — Ecology64, 1116–1123.Google Scholar
  17. Meese, R. J. & Tomich, P. A., 1992. Dots on the rocks: a comparison of percent cover estimation methods. — J. exp. mar. Biol. Ecol.165, 59–73.CrossRefGoogle Scholar
  18. Nicholls, D. J., Tubbs, C. R. & Haynes, F. N., 1981. The effect of green algal mats on intertidal macrobenthic communities and their predators. — Kieler Meeresforsch. (Sonderh.)5, 511–520.Google Scholar
  19. Nicotri, M. E., 1980. Factors involved in herbivore food preference. — J. exp. mar. Biol. Ecol.42, 13–26.CrossRefGoogle Scholar
  20. Nienburg, W., 1927. Zur Ökologie der Flora des Wattenmeers. 1. Der Königshafen bei List auf Sylt. — Wiss. Meeresunters. (Kiel)20, 146–196.Google Scholar
  21. Norton, T. A. & Manley, N. L., 1990. The characteristics of algae in relation to their vulnerability to grazing snails. In: Behavioural mechanisms of food selection. Ed. by R. N. Hughes. Springer, Berlin, 462–478.Google Scholar
  22. Norton, T. A., Hawkins, S. J., Manley, N. L., Williams, G. A. & Watson, D. C., 1990. Scraping a living: a review of littorinid grazing. — Hydrobiologia193, 117–138.CrossRefGoogle Scholar
  23. Petraitis, P. S., 1983. Grazing patterns of the periwinkle and their effect on sessile intertidal organisms. — Ecology64, 522–533.Google Scholar
  24. Price, L. H. & Hylleberg, J., 1982. Algal-faunal interactions in a mat ofUlva fenestra in False Bay, Washington. — Ophelia21, 75–88.Google Scholar
  25. Reise, K., 1983. Sewage, green algal mats anchored by lugworms, and the effects on Turbellaria and small Polychaeta. — Helgoländer Meeresunters.36, 151–162.Google Scholar
  26. Reise, K. & Siebert, I., 1994. Mass occurrence of green algae in the German Wadden Sea. — Dt. hydrogr. Z. (Suppl.)1, 171–180.Google Scholar
  27. Reise, K., Herre, E. & Sturm, M., 1989. Historical changes in the benthos of the Wadden Sea around the island of Sylt in the North Sea. — Helgoländer Meeresunters.43, 417–433.Google Scholar
  28. Santelices, B. & Ugarte, R., 1987. Algal life-history strategies and resistance to digestion. — Mar. Ecol. Prog. Ser.35, 267–275.Google Scholar
  29. Shacklock, P. F. & Doyle, R. W., 1983. Control of epiphytes in seaweed cultures using grazers. — Aquaculture31, 141–151.CrossRefGoogle Scholar
  30. Soulsby, P. G., Lowthion, D. & Houston, M., 1982. Effects of macroalgal mats on the ecology of intertidal mudflats. — Mar. Pollut. Bull.13 (5), 162–166.Google Scholar
  31. Warwick, R. M., Davey, J. T., Gee, J. M. & George, C. L., 1982. Faunistic control ofEnteromorpha blooms: a field experiment. — J. exp. mar. Biol. Ecol.56, 23–31.Google Scholar
  32. Watson, D. C. & Norton, T. A., 1985a. Dietary preferences of the common periwinkleLittorina littorea (L.). — J. exp. mar. Biol. Ecol.88, 193–211.CrossRefGoogle Scholar
  33. Watson, D. C. & Norton, T. A., 1985b. The physical characteristics of seaweed thalli as deterrents to littorine grazers. — Botanica mar.28, 383–387.Google Scholar
  34. Wohlenberg, E., 1937. Die Wattenmeer-Lebensgemeinschaft im Königshafen von Sylt. — Helgoländer wiss. Meeresunters.1, 1–92CrossRefGoogle Scholar
  35. Woodin, S. A., 1977. Algal “gardening” behaviour by nereid polychaetes: effects on soft-bottom community structure. — Mar. Biol.44, 39–42.CrossRefGoogle Scholar

Copyright information

© Biologische Anstalt Helgoland 1994

Authors and Affiliations

  • U. Wilhelmsen
    • 1
  • K. Reise
    • 1
  1. 1.Biologische Anstalt HelgolandListFederal Republic of Germany

Personalised recommendations