Advertisement

Helgoländer Meeresuntersuchungen

, Volume 48, Issue 4, pp 445–466 | Cite as

Hatching rhythms and dispersion of decapod crustacean larvae in a brackish coastal lagoon in Argentina

  • K. Anger
  • E. Spivak
  • C. Bas
  • D. Ismael
  • T. Luppi
Article

Abstract

Mar Chiquita, a brackish coastal lagoon in central Argentina, is inhabited by dense populations of two intertidal grapsid crab species,Cyrtograpsus angulatus andChasmagnathus granulata. During a preliminary one-year study and a subsequent intensive sampling programme (November–December 1992), the physical properties and the occurrence of decapod crustacean larvae in the surface water of the lagoon were investigated. The lagoon is characterized by highly variable physical conditions, with oligohaline waters frequently predominating over extended periods. The adjacent coastal waters show a complex pattern of semidiurnal tides that often do not influence the lagoon, due to the existence of a sandbar across its entrance. Besides frequently occurring larvae (exclusively freshly hatched zoeae and a few megalopae) of the two dominating crab species, those of three other brachyurans (Plathyxanthus crenulatus, Uca uruguayensis, Pinnixa patagonica) and of one anomuran (the porcellanidPachycheles haigae) were also found occasionally. Caridean shrimp (Palaemonetes argentinus) larvae occurred in a moderate number of samples, with a maximum density of 800·m−3. The highest larval abundance was recorded inC. angulatus, with almost 8000°m−3. Significantly moreC. angulatus andC. granulata zoeae occurred at night than during daylight conditions, and more larvae (statistically significant only in the former species) during ebb (outflowing) than during flood (inflowing) tides. In consequence, most crab zoeae were observed during nocturnal ebb, the least with diurnal flood tides. Our data suggest that crab larvae do not develop in the lagoon, where the adult populations live, but exhibit an export strategy, probably based upon exogenously coordinated egg hatching rhythms. Zoeal development must take place in coastal marine waters, from where the megalopa eventually returns for settlement and metamorphosis in the lagoon. Significantly higher larval frequency ofC. granulata in low salinities (≤12‰) and at a particular sampling site may be related to local distribution patterns of the reproducing adult population. Unlike crab larvae, those of shrimp (P. argentinus) are retained inside the lagoon, where they develop from hatching through metamorphosis. They significantly prefer low salinity and occur at the lagoon surface more often at night. These patterns cannot be explained by larval release rhythms like those in brachyuran crabs, but may reflect diel vertical migrations to the bottom. It is concluded that osmotic stress as well as predation pressure exerted by visually directed predators (small species or life-cycle stages of estuarine fishes) may be the principal selection factors for the evolution of hatching and migration rhythms in decapod larvae, and that these are characteristics of export or retention mechanisms, respectively.

Keywords

Diel Vertical Migration Crab Species Crab Larva Brachyuran Crab Caridean Shrimp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Anger, K., 1983. Moult cycle and morphogenesis inHyas araneus larvae (Decapoda, Majidae), reared in the laboratory.—Helgoländer Meeresunters.36, 285–302.Google Scholar
  2. Anger, K., 1987. The Do threshold: a critical point in the larval development of decapod crustaceans.—J. exp. mar. Biol. Ecol.108, 15–30.CrossRefGoogle Scholar
  3. Bengston, D. A., 1984. Resource partitioning byMenidia menidia andMenidia beryllina (Osteichthyes: Atherinidae).—Mar. Ecol. Prog. Ser.18, 21–30.Google Scholar
  4. Boschi, E. E., 1964. Los crustáceos decápodos Brachyura del litoral bonaerense (R. Argentina).—Boln Inst. Biol. mar., Mar del Plata6, 1–100.Google Scholar
  5. Boschi, E. E., 1981. Larvas de crustacea decapoda. In: Atlas del zooplancton del Atlántico Sudoccidental. Ed. by D. Boltovskoy. INIDEP, Mar del Plata, 699–758.Google Scholar
  6. Boschi, E. E., 1988. El ecosistema estuarial del Rio de la Plata (Argentina y Uruguay).—An. Inst. Cienc. Mar Limnol. Univ. nac. autón. México15, 159–182.Google Scholar
  7. Boschi, E. E., Scelzo, M. A. & Goldstein, B., 1967. Desarrollo larval de dos especies de Crustáceos Decápodos en el laboratorio.Pachycheles haigae Rodrigues Da Costa (Porcellanidae) yChasmagnathus granulata Dana (Grapsidae).—Boln Inst. Biol. mar., Mar del Plata12, 3–46.Google Scholar
  8. Bundesamt für Seeschiffahrt und Hydrographie (Ed.) 1991. Nautisches Jahrbuch oder Ephemeriden und Tafeln für das Jahr 1992 zur Bestimmung der Zeit, Länge und Breite auf See nach astronomischen Beobachtungen.—Naut. Jb., Hamb.141, 1–45.Google Scholar
  9. Cain, R. L. & Dean, J. M., 1976. Annual occurrence, abundance and diversity of fish in a South Carolina intertidal creek.—Mar. Biol.36, 369–379.CrossRefGoogle Scholar
  10. Christy, J. H. & Stancyk, S. E., 1982. Timing of larval production and flux of invertebrate larvae in a well-mixed estuary. In: Estuarine comparisons. Ed. by V. S. Kennedy. Acad. Press, New York, 489–503.Google Scholar
  11. Crabtree, R. E. & Dean, J. M., 1982. The structure of two South Carolina estuarine tide pool fish assemblages.—Estuaries5, 2–9.Google Scholar
  12. Cronin, T. W., 1982. Estuarine retention of larvae of the crabRhithropanopeus harrisii.—Estuar. coast. Shelf Sci.15, 207–220.CrossRefGoogle Scholar
  13. Cronin, T. W. & Forward, R. B., 1979. Tidal vertical migration: an endogenous rhythm in estuarine crab larvae.—Science, N. Y.205, 1020–1022.Google Scholar
  14. Cronin, T. W. & Forward, R. B., 1980. The effects of starvation on phototaxis and swimming of larvae of the crabRhithropanopeus harrisii.—Biol. Bull. mar. biol. Lab., Woods Hole158, 283–294.Google Scholar
  15. Cronin, T. W. & Forward, R. B., 1982. Tidally timed behaviour: effects on larval distributions in estuaries. In: Estuarine comparison, Ed. by V. S. Kennedy. Acad. Press, New York, 505–520.Google Scholar
  16. Cronin, T. W. & Forward, R. B., 1983. Vertical migration rhythms of newly hatched larvae of the estuarine crab,Rhithropanopeus harrisii.—Biol. Bull. mar. biol. Lab., Woods Hole165, 139–153.Google Scholar
  17. Cronin, T. W. & Forward, R. B., 1986. Vertical migration cycles of crab larvae and their role in larval dispersal.—Bull. mar. Sci.39, 192–201.Google Scholar
  18. DeCoursey, P. J., 1979. Egg hatching rhythms in three species of fiddler crabs. In: Proceedings of the 13th European Marine Biology Symposium. Ed. by E. Naylor & R. G. Hartnoll. Pergamon Press, Oxford, 399–406.Google Scholar
  19. DeVries, M. C. & Forward, R. B., 1989. Rhythms in larval release of the sublittoral crabNeopanope sayi and the supralittoral crabSesarma cinereum (Decapoda: Brachyura).—Mar. Biol.100, 241–248.Google Scholar
  20. DeVries, M. C. & Forward, R. B., 1991a. Control of egg-hatching time in crabs from different tidal heights.—J. crust. Biol.11, 29–39.Google Scholar
  21. DeVries, M. C. & Forward, R. B., 1991b. Mechanisms of crustacean egg hatching: evidence for enzyme release by crab embryos.—Mar. Biol.110, 281–291.Google Scholar
  22. DeVries, M. C., Epifanio, C. E. & Dittel, A. I., 1983a. Reproductive periodicity of the tropical crabCallinectes arcuatus Ordway in Central America.—Estuar. coast. Shelf Sci.17, 709–716.Google Scholar
  23. DeVries, M. C., Epifanio, C. E. & Dittel, A. I., 1983b. Lunar rhythms in the egg hatching of the subtidal crustacean:Callinectus arcuatus Ordway (Decapoda: Brachyura).—Estuar. coast. Shelf Sci.17, 717–724.Google Scholar
  24. Drach, P., 1939. Mue et cycle d’intermue chez la Crustacés décapodes.—Annls Inst. océanogr., Monaco19, 103–391.Google Scholar
  25. Epifanio, C. E. & Dittel, A. I., 1982. Comparison of dispersal of crab larvae in Delaware Bay, USA, and the Gulf of Nicoya, Central America. In: Estuarine comparisons. Ed. by V. S. Kennedy. Acad. Press. New York, 477–487.Google Scholar
  26. Fasano, J. L., Hernández, M. A., Isla, F. I. & Schnack, E. J., 1982. Aspectos evolutivos y ambientales de la laguna Mar Chiquita (provincia de Buenos Aires, Argentina).—Oceanologica Acta1982 (Nr. spéc.), 285–292.Google Scholar
  27. Forward, R. B., 1987. Larval release rhythms of decapod crustaceans: an overview.—Bull. mar. Sci.41, 165–176.Google Scholar
  28. Forward, R. B. & Lohmann, K. J., 1983. Control of egg hatching in the crabRhithropanopeus harrisii (Gould).—Biol. Bull. mar. biol. Lab., Woods Hole165, 154–166.Google Scholar
  29. Forward, R. B., Lohmann, K. & Cronin, T. W., 1982. Rhythms in larval release by an estuarine crab (Rhithropanopeus harrisii).—Biol. Bull. mar. biol. Lab., Woods Hole163, 287–300.Google Scholar
  30. Forward, R. B., Douglass, J. K. & Kenney, B. E., 1986. Entrainment of the larval release rhythm of the crabRhithropanopeus harrisii (Brachyura: Xanthidae) by cycles in salinity change.—Mar. Biol.90, 537–544.CrossRefGoogle Scholar
  31. Gliwicz, Z. M., 1986. A lunar cycle in zooplankton.—Ecology67, 883–898.Google Scholar
  32. Hartnoll, R. G., 1988, Evolution, systematics, and geographical distribution. In: Biology of the land crabs. Ed. by W. W. Burggren & B. R. McMahon. Cambridge Univ. Press, New York, 6–54.Google Scholar
  33. McErlean, A. J., O’Conner, S. G., Milhursky, J. A. & Gibson, C. I., 1972. Abundance, diversity and seasonal patterns of estuarine fish populations.—Estuar. coast. mar. Sci.1, 19–36.Google Scholar
  34. Menú-Marque, S. A., 1973. Desarrollo larval dePalaemonetes artentinus (Nobili, 1901) en el laboratorio (Crustacea, Caridea, Palaemonidae).—Physis, B. Aires (Sec. B)32, 149–169.Google Scholar
  35. Millikin, M. R. & Williams, A. B., 1984. Synopsis of biological data on the blue crab,Callinectes sapidus Rathbun.—NOAA Tech. Rep. NMFS1, 1–39.Google Scholar
  36. Morgan, S. G., 1987a. Adaptive significance of hatching rhythms and dispersal patterns of estuarine crab larvae: avoidance of physiological stress by larval export?—J. exp. mar. Biol. Ecol.113, 71–78.CrossRefGoogle Scholar
  37. Morgan, S. G., 1987b. Morphological and behavioral antipredatory adaptations of decapod zoeae.—Oecologia73, 393–400.CrossRefGoogle Scholar
  38. Naylor, E., 1976. Rhythmic behaviour and reproduction in marine animals. In: Adaptation to environment. Ed. by R. R. Newell. Butterworth, London, 393–429.Google Scholar
  39. Olivier, S., Escofet, A., Penchaszadeh, P. & Orensanz, J., 1972. Estudios ecológicos de la región estuarial de Mar Chiquita (Bs. As. Argentina). I. Las comunidades bentónicas.—An. Soc. cient. Argent.193, 237–262.Google Scholar
  40. Remane, A., 1971. Ecology of brackish water. In: Biology of brackish water. Ed. by A. Remane & C. Schlieper. Wiley, New York, 210 pp.Google Scholar
  41. Rittschof, D., Forward, R. B. & Mott, D., 1985. Larval release in the crabRhithropanopeus harrisii (Gould): chemical cues from hatching eggs.—Chem. Senses10, 567–577.Google Scholar
  42. Rittschof, D., Forward, R. B., Simons, D. A., Reddy, P. A. & Erickson, B. W., 1989. Peptide analogs of the mud crab pumping pheromone: structure-function studies—Chem. Senses14, 137–148.Google Scholar
  43. Saigusa, M. & Hidaka, T., 1978. Semilunar rhythm in the zoea-release activity of the land crabsSesarma.—Oecologia37, 163–176.CrossRefGoogle Scholar
  44. Sandifer, P. A., 1973. Distribution and abundance of decapod crustacean larvae in the York River estuary and adjacent lower Cheaspeake Bay, Virginia, 1968–1969.—Chesapeake Sci.14, 235–257.Google Scholar
  45. Sandifer, P. A., 1975. The role of pelagic larvae in recruitment to populations of adult decapod crustaceans in the York River estuary and adjacent lower Chesapeake Bay, Virginia.3, 269–279.Google Scholar
  46. Scelzo, M. A. & Lichtschein, V. B., 1979. Desarrollo larval y metamórfosis del cangrejoCyrtograpsus altimanus Rathbun, 1914 (Brachyura, Grapsidae) en laboratorio, con observaciones sobre la ecología de la especie.—Physis, B. Aires (Sec. A)38, 103–126.Google Scholar
  47. Smyth, P. O., 1980.Callinectes (Decapoda: Portunidae) larvae in the Middle Atlantic Bight, 1975–77.—Fish. Bull. U.S.78, 251–265.Google Scholar
  48. Sokal, R. R. & Rohlf, F. J., 1981. Biometry. Freeman, San Francisco, 859 pp.Google Scholar
  49. Spivak, E., Anger, K., Luppi, T., Bas, C. & Ismael, D., 1994. Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina).—Helgoländer Meeresunters.48, 59–78.CrossRefGoogle Scholar
  50. Stich, H. B. & Lampert, W., 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton.—Nature, Lond.293, 396–398.CrossRefGoogle Scholar
  51. Subrahmanyam, C. B. & Drake, S. H., 1975. Studies on the animal communities in two north Florida salt marshes.—Bull. mar. Sci.25, 445–465.Google Scholar
  52. Thayer, G. W., Hoss, D. E., Kjelson, M. A., Hettler, W. F. & Lacroix, M. W., 1974. Biomass of zooplankton in the Newport River estuary and the influence of post-larval fishes.—Chesapeake Sci.15, 9–16.Google Scholar
  53. Truesdale, F. M. & Adryszak, B. L., 1983. Occurrence and distribution of reptant decapod crustacean larvae in neritic Louisiana waters: July 1976.—Contr. mar. Sci.26, 37–53.Google Scholar
  54. Weinstein, M. P., 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina.—Fish Bull. U. S.77, 339–356.Google Scholar
  55. Zaret, T. M. & Suffern, J. S., 1976. Vertical migration in zooplankton as a predator avoidance mechnism.—Limnol. Oceanogr.21, 804–813.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1994

Authors and Affiliations

  • K. Anger
    • 1
  • E. Spivak
    • 2
  • C. Bas
    • 2
  • D. Ismael
    • 1
  • T. Luppi
    • 2
  1. 1.Biologische Anstalt Helgoland, MeeresstationHelgolandGermany
  2. 2.Departamento de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataRepública Argentina

Personalised recommendations