Helgoländer Meeresuntersuchungen

, Volume 48, Issue 1, pp 59–78 | Cite as

Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina)

  • E. Spivak
  • K. Anger
  • T. Luppi
  • C. Bas
  • D. Ismael


Cyrtograpsus angulatus andChasmagnathus granulata (Grapsidae) are the two dominant decapod crustacean species in the outer parts of Mar Chiquita Lagoon, the southernmost in a series of coastal lagoons that occur along the temperate Atlantic coasts of South America. Distribution and habitat preferences (water and sediment type) in these crab species were studied in late spring. There is evidence of ontogenetic changes in habitat selection of both species. Recruitment ofC. angulatus takes place mainly in crevices of tube-building polychaete (Ficopomatus enigmaticus) “reefs” and, to a lesser extent, also in other protected microhabitats (under stones). In the latter, mostly somewhat larger juveniles were found, suggesting that these are used as a refuge for growing individuals. Adults are most frequently found on unprotected muddy and sandy beaches.C. angulatus was found in all parts of Mar Chiquita Lagoon, including freshwater, brackish, and marine habitats.C. granulata, in contrast, was restricted to the lower parts of the lagoon, where brackish water predominates and freshwater or marine conditions occur only exceptionally. It showed highest population density on “dry mud” flats and inSpartina densiflora grassland, where it can build stable burrows and where high contents of organic matter occur in the sediment. Such habitats are characterized by mixed populations of juveniles (including newly settled recruits) and adults, males and females (including a high percentage of ovigerous). Unstable “wet mud” as well as stony sand were found to be inhabited by chiefly adult populations, with only few ovigerous females. In “dry mud” flats, the proportion of males increased vertically with increasing level in the intertidal zone, showing a significantly increasing trend also in their average body size. These observations may be explained by higher resistance of males, in particular of large individuals, to desiccation, salinity, and temperature stress occurring in the upper intertidal. However, an opposite, or no such, tendency was found in the distribution of ovigerous and non-ovigerous females, respectively. With increasing distance from the water edge, salinity increased and pH decreased significantly inC. granulata burrows, whereas temperature showed no consistent tendency within the intertidal gradient. A highly significant linear relationship (r=−0.794; P<0.001) between salinity and pH in water from crab burrows is described. This regression line is significantly different from one that had been observed in water from the lagoon, indicating consistently lower pH values at any salinity level in burrow water. This is interpreted as a result of crab and/or microbial respiration.


Polychaete Habitat Preference Decapod Crustacean Ovigerous Female Crab Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Anger, K., Spivak, E., Bas, C., Ismael, D. & Luppi, T., 1994. Hatching rhythms and dispersion of decapod crustacean larvae in a brackish coastal lagoon in Argentina. — Helgoländer Meeresunters,48 (in press).Google Scholar
  2. Boschi, E. E., 1964. Los crustáceos decápodos brachyura del litoral bonaerense (R. Argentina). — Boln Inst. Biol. mar., Mar del Plata6, 1–99.Google Scholar
  3. Boschi, E. E., 1988. El ecosistema estuarial del Rio de la Plata Argentina y Uruguay. — An. Inst. Cienc. Mar Limnol. Univ. Nac. Autón. México15, 159–182.Google Scholar
  4. Brown, A. C. & McLachlan, A., 1990. Ecology of sandy shores. Elsevier, Amsterdam, 328 pp.Google Scholar
  5. Burggren, W. W. & McMahon, B. R. (Eds.) 1988. Biology of the land crabs. Cambridge Univ. Press, New York, 479 pp.Google Scholar
  6. Fasano, J. L., Hernández, M. A., Isla, F. I. & Schnack, E. J., 1982. Aspectos evolutivos y ambientales de la laguna de Mar Chiquita, Provincia de Buenos Aires, Argentina. International Symposium on coastal lagoons, Bordeaux, France, September 8–14, 1981. — Oceanologica ActaVol. spéc., 285–292.Google Scholar
  7. Goya, M., 1988. La construcción de cuevas del cangrejoChasmagnathus granulata en la laguna de Mar Chiquita. Thesis, Univ. de Mar del Plata, 24 pp.Google Scholar
  8. Heck, K. L. & Hambrook, J. A., 1991. Intraspecific interactions and risk of predation forDyspanopeus sayi (Decapoda: Xanthidae) living on polychaete (Filograna implexa, Serpulidae) colonies. —Mar. Ecol.12, 243–250.Google Scholar
  9. Lana, P., Guiss, C. & Trevisan Disaró, S., 1991. Seasonal variation of biomass and production dynamics for above- and belowground components of aSpartina alterniflora marsh in the euhaline sector of Paranaguá Bay, SE Brazil. — Estuar. coast. Shelf Sci.32, 231–241.CrossRefGoogle Scholar
  10. Obenat, S. & Pezzani, S. 1989. Ecological studies ofFicopomatus (Mercierella) enigmaticus (Annelida: Polychaeta) in Mar Chiquita coastal lagoon, Buenos Aires, Argentina. Third International Wetlands Conference, Rennes, September 19–23, 1988. Muséum National d'Histoire Naturelle, Paris, 165–166.Google Scholar
  11. Olivier, S., Escofet, A., Penchaszadeh, P. & Orensanz, J., 1972a. Estudios ecológicos de la región estuarial de Mar Chiquita (Bs. As., Argentina). I. Las comunidades bentónicas. — An. Soc. cient. argent.193, 237–262.Google Scholar
  12. Olivier, S., Escofet, A., Penchaszadeh, P. & Orensanz, J., 1972 b. Estudios ecológicos de la región estuarial de Mar Chiquita (Bs. As., Argentina). II. Relaciones tróficas interspecíficas. — An. Soc. cient. argent.,194, 89–104.Google Scholar
  13. Powers, L. W. & Bliss, D. E., 1983. Terrestrial adaptations. In: The biology of Crustacea. Ed. by D. E. Bliss. Acad. Press, New York,8, 271–333.Google Scholar
  14. Reise, K., 1985. Tidal flat ecology. Springer, New York 191 pp.Google Scholar
  15. Rivero d'Andrea, I., 1989. Fenómeno de ocupación de latas vacías por parte del cangrejoChasmagnathus granulata. Thesis, Univ. de Mar del Plata, 37 pp.Google Scholar
  16. Santos, E. A., Baldisseroto, B., Bianchini, A., Colares, E. P., Nery, L. E. M. & Manzoni, G. C., 1987. Respiratory mechanisms and metabolic adaptations of an intertidal crab,Chasmagnathus granulata (Dana, 1851). — Comp. Biochem. Physiol.88A, 21–25.Google Scholar
  17. Sastry, A. N., 1983. Ecological aspects of reproduction. In: The biology of Crustacea. Ed. by D. E. Bliss. Acad. Press, New York,8, 179–271.Google Scholar
  18. Seiple, W., 1979. Distribution, habitat preferences and breeding periods in the crustaceansSesarma cinereum andS. reticulatum Brachyura: Decapoda: Grapsidae. — Mar. Biol.52, 77–86.CrossRefGoogle Scholar
  19. Sokal, R. R. & Rohlf, F. J., 1981. Biometry. Freeman, San Francisco, 859 pp.Google Scholar
  20. Spivak, E. & Politis, M., 1989. High incidence of limb autotomy in a crab population from a coastal lagoon in the province of Buenos Aires, Argentina. — Can. J. Zool.67, 1976–1985.Google Scholar
  21. Valiela, I., 1984. Marine ecological processes. Springer, New York, 546 pp.Google Scholar

Copyright information

© Biologische Anstalt Helgoland, Hamburg 1994

Authors and Affiliations

  • E. Spivak
    • 1
  • K. Anger
    • 2
  • T. Luppi
    • 1
  • C. Bas
    • 1
  • D. Ismael
    • 2
  1. 1.Departamento de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataRepública Argentina
  2. 2.Biologische Anstalt Helgoland (Meeresstation)HelgolandFederal Republic of Germany

Personalised recommendations