Journal of Mathematical Sciences

, Volume 97, Issue 3, pp 4109–4115 | Cite as

Dimension axioms and decomposing mappings

  • V. A. Chatyrko
Article
  • 26 Downloads

Abstract

An axiomatic definition of the covering dimension dim in the class of all (closed) subsets of finite-dimensional cubes is given relative to decomposing mappings. An axiomatic definition of the possible transfinite extension of this dimension in the class of all (closed) subsets of the Smirnov compacta is suggested. Bibliography: 15 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Pasynkov and V. A. Chatyrko, “On topological products and dimension,”Vestn. Mosk. Univ., Mat., Mekh. No. 3, 22–25 (1993).MathSciNetGoogle Scholar
  2. 2.
    P. S. Alexandroff and B. A. Pasynkov,Introduction to Dimension Theory [in Russian], Nauka, Moscow (1973).Google Scholar
  3. 3.
    A. V. Zarelua, “Equality of dimensions and compactifications,”Dokl. Akad. Nauk SSSR,144, No. 4, 713–716 (1962).MATHMathSciNetGoogle Scholar
  4. 4.
    P. S. Alexandroff, “On some old problems of homological dimension theory,” in:Proc. Int. Symp. on Topology and Its Applications [in Russian], Herzeg-Novi (1968), pp. 38–42.Google Scholar
  5. 5.
    E. V. Shchepin, “Axiomatics of the dimension of metric spaces,”Dokl. Akad. Nauk SSSR,206, No. 1, 31–32 (1972).MATHMathSciNetGoogle Scholar
  6. 6.
    D. W. Henderson, “D-Dimension I,”Pacific J. Math.,26, 91–107 (1968).MATHMathSciNetGoogle Scholar
  7. 7.
    B. A. Pasynkov, V. V. Fedorchuk, and V. V. Filippov, “Dimension theory,” in:Itogi Nauki i Tekhniki. Algebra, Topologiya, Geometriya,17 [in Russian], VINITI, Moscow (1973), pp. 129–230.Google Scholar
  8. 8.
    R. Engelking,Dimension Theory, PWN, Warszawa (1978).Google Scholar
  9. 9.
    A. Ch. Chigogidze, “Axiomatics of the covering dimension of completely regular spaces,”Soobshcheniya Akad. Nauk GSSR,91, 273–275 (1978).MATHMathSciNetGoogle Scholar
  10. 10.
    O. V. Lokutsievskii, “Axiomatic definition of the dimension of compact spaces,”Dokl. Akad. Nauk SSSR,212, No. 4, 813–815 (1973).MATHMathSciNetGoogle Scholar
  11. 11.
    V. V. Fedorchuk, “Principles of dimension theory.” in:Contemporary Problems in Mathematics. Basic Trends,17 [in Russian], VINITI, Moscow (1987), pp. 111–224.Google Scholar
  12. 12.
    V. A. Chatyrko, “Decomposing mappings and transfinite dimension”,Zbornik Radova Filoz. Facult. u Nisu, Ser. Mat. (to appear).Google Scholar
  13. 13.
    V. A. Chatyrko, “Ordinal products of topological spaces”,Fund. Math. (to appear).Google Scholar
  14. 14.
    K. Kuratowski,Topology, Vol. 1, Academic Press, New York-London (1966).Google Scholar
  15. 15.
    R. H. Bing, “Higher-dimensional hereditarily indecomposable continua,”Trans. Amer. Math. Soc.,71, 267–273 (1951).MATHMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. A. Chatyrko

There are no affiliations available

Personalised recommendations