Helgoländer Meeresuntersuchungen

, Volume 42, Issue 2, pp 199–241 | Cite as

Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: Experimental and phenological evidence

  • A. M. Breeman
Article

Abstract

Experimentally determined ranges of thermal tolerance and requirements for completion of the life history of some 60 seaweed species from the North Atlantic Ocean were compared with annual temperature regimes at their geographic boundaries. In all but a few species, thermal responses accounted for the location of boundaries. Distribution was restricted by: (a) lethal effects of high or low temperatures preventing survival of the hardiest life history stage (often microthalli), (b) temperature requirements for completion of the life history operating on any one process (i.e. [sexual] reproduction, formation of macrothalli or blades), (c) temperature requirements for the increase of population size (through growth or the formation of asexual propagules). Optimum growth/reproduction temperatures or lethal limits of the non-hardiest stage (often macrothalli) were irrelevant in explaining distribution. In some species, ecotypic differentiation in thermal responses over the distribution range influenced the location of geographic boundaries, but in many other species no such ecotypic differences were evident. Specific daylength requirements affected the location of boundaries only when interacting with temperature. The following types of thermal responses could be recognised, resulting in characteristic distribution patterns: (A) Species endemic to the (warm) temperate eastern Atlantic had narrow survival ranges (between ca 5 and ca 25°C) preventing occurrence in NE America. In species with isomorphic life histories without very specific temperature requirements for reproduction, northern and southern boundaries in Eur/Africa are set by lethal limits. Species with heteromorphic life histories often required high and/or low temperatures to induce reproduction in one or both life history phases which further restricted distribution. (B) Species endemic to the tropical western Atlantic also had narrow survival ranges (between ca 10 and ca 35°C). Northern boundaries are set by low, lethal winter temperatures. Thermal properties would potentially allow occurrence in the (sub) tropical eastern Atlantic, but the ocean must have formed a barrier to dispersal. No experimental evidence is so far available for tropical species with an amphi-Atlantic distribution. (C) Tropical to temperate species endemic to the western Atlantic had broad survival ranges (<0 to ca 35°C). Northern boundaries are set by low summer temperatures preventing (growth and) reproduction. Thermal properties would permit occurrence in the (sub)tropical eastern Atlantic, but along potential “stepping stones” for dispersal in the northern Atlantic (Greenland, Iceland, NW Europe) summer temperatures would be too low for growth. (D) In most amphi-Atlantic (tropical-) temperate species, northern boundaries are set by low summer temperatures preventing reproduction or the increase of population size. On European shores, species generally extended into regions with slightly lower summer temperatures than in America, probably because milder winters allow survival of a larger part of the population. (E) Amphi-Atlantic (Arctic-) temperate species survived at subzero temperatures. In species with isomorphic life histories not specifically requiring low temperatures for reproduction, southern boundaries are set by lethally high summer temperatures on both sides of the Atlantic. None of the species survived temperatures over 30°C which prevents tropical occurrence. Species with these thermal responses are characterized by distribution patterns in which southern boundaries in Eur/Africa lie further south than those in eastern N America because of cooler summers. In most species with heteromorphic life histories (or crustose and erect growth forms), low temperatures were required for formation of the macrothalli (either directly or through the induction of sexual reproduction). These species have composite southern boundaries in the north Atlantic Ocean. On American coasts, boundaries are set by lethally high summer temperatures, on European coasts by winter temperatures too high for the induction of macrothalli. Species with this type of thermal responses are characterized by distribution patterns in which the boundaries in Eur/Africa lie further north than those in eastern N America because of warmer winters.

Literature Cited

  1. Ajisaka, T. & Umezaki, I., 1978. The life history ofSphaerotrichia divaricata (Ag.) Kylin in culture. —Jap. J. Phycol.26, 53–59.Google Scholar
  2. Amsler, C. D., 1985. Field and laboratory studies ofGiffordia mitchelliae (Phaeophyceae) in North Carolina. — Botanica mar.28, 295–301.Google Scholar
  3. Ardré, F., 1970. Contribution à l'étude des algues marines du Portugal. I. La flore. — Port. Acta biol. (B)10, 1–420.Google Scholar
  4. Ardré, F., 1971. Contribution à l'étude des algues marines du Portugal. II. Ecologie et chorologie. —Bull. Cent. Etud. Rech. scient., Biarritz8, 359–574.Google Scholar
  5. Bird, C. J., Greenwell, M. & McLachlan, J., 1983. Benthic marine algal flora of the north shore of Prince Edward Island (Gulf of St. Lawrence), Canada. — Aquat. Bot.16, 315–335.CrossRefGoogle Scholar
  6. Bird, C. J. & McLachlan, J., 1986. The effect of salinity on distribution of species ofGracilaria Grev. (Rhodophyta, Gigartinales): an experimental assessment. — Botanica mar.29, 231–238.Google Scholar
  7. Bolton, J. J., 1983. Ecoclinal variation inEctocarpus siliculosus (Phaeophyceae) with respect to temperature growth optima and survial limits. — Mar. Biol.73, 131–138.CrossRefGoogle Scholar
  8. Bolton, J. J., Germann, I. & Lüning, K., 1983. Hybridization between Atlantic and Pacific representatives of the Simplices section ofLaminaria (Phaeophyta). — Phycologia22, 133–140.Google Scholar
  9. Bolton, J. J. & Lüning, K., 1982. Optimal growth and maximal survival temperatures of AtlanticLaminaria species (Phaeophyta) in culture. — Mar. Biol.66, 89–94.CrossRefGoogle Scholar
  10. Breeman, A. M., Bos, S., Essen, S. van & Mulekom, L. L. van, 1984. Light-dark regimes intertidal zone and tetrasporangial periodicity in the red algaRhodochorton purpureum. —Helgoländer Meeresunters.38, 365–387.CrossRefGoogle Scholar
  11. Breeman, A. M. & Hoeksema, B. W., 1987. Vegetative propagation of the red algaRhodochorton purpureum by means of fragments that escape digestion by herbivores. — Mar. Ecol. Prog. Ser.35, 197–201.Google Scholar
  12. Breeman, A. M. & Hoopen, A. ten, 1981. Ecology and distribution of the subtidal red algaAcrosymphyton purpuriferum (J. Ag.) Sjöst. (Rhodophyceae, Cryptonemiales). — Aquat. Bot.11, 143–166.CrossRefGoogle Scholar
  13. Breeman, A. M., Meulenhoff, E. J. S. & Guiry, M. D., 1988. Life history regulation and phenology of the red algaBonnemaisonia hamifera. — Helgoländer Meeresunters.42 (in press).Google Scholar
  14. Cambridge, M. L., Breeman, A. M., Oosterwijk, R. van & Hoek, C. van den, 1984. Temperature responses of some North AtlanticCladophora species (Chlorophyceae) in relation to their geographic distribution. — Helgoländer Meeresunters.38, 349–363.CrossRefGoogle Scholar
  15. Cambridge, M. L., Breeman, A. M., Kraak, S. & Hoek, C. van den, 1987. Temperature responses of tropical to warm temperateCladophora species in relation to their distribution in the North Atlantic Ocean. — Helgoländer Meeresunters.41, 329–354.Google Scholar
  16. Carlton, J. T. & Scanlon, J. A., 1985. Progression and dispersal of an introduced alga:Codium fragile ssp.tomentosoides (Chlorophyta) on the Atlantic coast of North America. — Botanica mar.28, 155–165.Google Scholar
  17. Correa, J., Novaczek, I. & McLachlan, J., 1986. Effect of temperature and daylength on morphogenesis ofScytosiphon lomentaria (Scytosiphonales, Phaeophyta) from eastern Canada. —Phycologia25, 469–475.Google Scholar
  18. Critchley, A. T., Farnham, W. F. & Morrell, S. L., 1983. A chronology of new European sites of attachment for the invasive brown alga,Sargassum muticum, 1973–1981. — J. mar. biol. Ass. U.K.63, 799–811.Google Scholar
  19. Dieck, I. tom, 1987. Temperature tolerance and daylength effects in isolates ofScytosiphon lomentaria (Phaeophyceae) of the North Atlantic and North Pacific Ocean. — Helgoländer Meeresunters.41, 307–321.CrossRefGoogle Scholar
  20. Dixon, P. S., 1965. Perennation, vegetative propagation and algal life histories, with special reference toAsparagopsis and other Rhodophyta. — Botanica gothoburg.3, 67–74.Google Scholar
  21. Dixon, P. S. & Irvine, L. M., 1977. Seaweeds of the British Isles. Vol. I. Rhodophyta. Part I. Introduction, Nemaliales, Gigartinales. British Museum, London,1(1), 1–252.Google Scholar
  22. Dring, M. J., 1984. Photoperiodism and phycology. In: Progress in Phycological Research. Ed. by F. Round & D. J. Chapman. Biopress Ltd., Bristol,3, 159–192.Google Scholar
  23. Dring, M. J. & Lüning, K., 1983. Photomorphogenesis of marine macroalgae. In: Encyclopedia of plant physiology. Ed. by W. Shropshire & H. Mohr. Springer, Heidelberg,16B, 545–568.Google Scholar
  24. Dring, M. J. & West, J. A., 1983. Photoperiodic control of tetrasporangium formation in the red algaRhodochorton purpureum. — Planta159, 143–150.CrossRefGoogle Scholar
  25. Earle, S. A., 1969. Phaeophyta of the eastern Gulf of Mexico. — Phycologia7, 71–254.Google Scholar
  26. Forward, S. G. & South, G. R., 1985. Observations on the taxonomy and life history of North AtlanticAcrothrix Kylin (Phaeophyceae, Chordariales). — Phycologia24, 347–359.Google Scholar
  27. Fries, L., 1966. Temperature optima of some red algae in axenic culture. — Botanica mar.9, 12–14.Google Scholar
  28. Furnari, G., 1984. The benthic marine algae of southern Italy. Floristic and geobotanic considerations. — Webbia38, 349–369.Google Scholar
  29. Gaines, S. D. & Lubchenko, J., 1982. A unified approach to marine plant-herbivore interactions. II. Biogeography. — A. Rev. Ecol. Syst.13, 111–138.Google Scholar
  30. Gorshkov, S. G. (Ed.), 1978. World Ocean Atlas. 2: Atlantic and Indian Oceans. Pergamon Press, Oxford.Google Scholar
  31. Gorshkov, S. G. (Ed.), 1980. World Ocean Atlas. 3: Arctic and Antarctic Oceans. Pergamon Press, Oxford.Google Scholar
  32. Guiry, M. D., 1984. Photoperiodic and temperature responses in the growth and tetrasporogenesis ofGigartina acicularis (Rhodophyta) from Ireland. — Helgoländer Meeresunters.38, 335–347.CrossRefGoogle Scholar
  33. Guiry, M. D. & Cunningham, E. M., 1984. Photoperiodic and temperature responses in the reproduction of north eastern AtlanticGigartina acicularis (Rhodophyta: Gigartinales). — Phycologia23, 357–367.Google Scholar
  34. Guiry, M. D., Tripodi, G. & Lüning, K., 1987. Biosystematics, genetics and upper temperature tolerance inGigartina teedii (Rhodophyta) from the Atlantic and Mediterranean. — Helgoländer Meeresunters.41, 283–295.CrossRefGoogle Scholar
  35. Hamel, G., 1931–1939. Phéophycées de France. Wolf, Rouan, 431 pp.Google Scholar
  36. Haugen, I. N., 1970. The male gametophyte ofBonnemaisonia hamifera Hariot in Norway. — Br. phycol. J.5, 239–241.Google Scholar
  37. Hay, M. E., 1981. Herbivory, algal distribution, and maintenance of between-habitat diversity on a tropical fringing reef. — Am. nat.118, 520–540.CrossRefGoogle Scholar
  38. Henry, E. C., 1987a. The life history ofPhyllariopsis brevipes (= Phyllaria reniformis) (Phyllariaceae, Phaeophyceae), a kelp with dioecious but sexually monomorphic gametophytes. — Phycologia26, 17–22.Google Scholar
  39. Henry, E. C., 1987b. Primitive reproductive characters and a photoperiodic response inSaccorhiza dermatodea (Laminariales, Phaeophyceae). — Br. phycol. J.22, 23–31.Google Scholar
  40. Hoek, C. van den, 1963. Revision of the European species ofCladophora. Brill, Leiden, 248 pp.Google Scholar
  41. Hoek, C. van den, 1982a. Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean. A review of experimental evidence from life history studies. — Helgoländer Meeresunters.35, 153–214.CrossRefGoogle Scholar
  42. Hoek, C. van den, 1982b. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. — Biol. J. Linn. Soc.18, 81–144.Google Scholar
  43. Hoek, C. van den, 1982c. A taxonomic revision of the American species ofCladophora (Chlorophyceae) in the North Atlantic Ocean and their geographic distribution. — Verh. K. ned. Acad. Wet. (Afd. Natuurk., 2. R.)78, 1–236.Google Scholar
  44. Hoek, C. van den, 1984. World-wide latitudinal and longitudinal seaweed distribution patterns and their possible causes, as illustrated by the distribution of Rhodophytan genera. — Helgoländer Meeresunters.38, 227–257.Google Scholar
  45. Hoek, C. van den & Donze, M., 1966. The algal vegetation of the rocky côte Basque (S. W. France). —Bull. Cent. Etud. Rech. scient., Biarritz,6, 289–319.Google Scholar
  46. Hommersand, M. H., 1986. The biogeography of the South African marine red algae: a model. —Botanica mar.29, 257–270.Google Scholar
  47. Hoopen, A. ten, Bos, S. & Breeman, A. M., 1983. Photoperiodic response in the formation of gametangia of the long-day plantSphacelaria rigidula (Phaeophyceae). — Mar. Ecol. Prog. Ser.13, 285–289.Google Scholar
  48. Hooper, R. G., South, G. R. & Whittick, A., 1980. Ecological and phenological aspects of the marine phytobenthos of the island of Newfoundland. In: The shore environment. Ed. by J. H. Price, D. E. G. Irvine & W. F. Farnham. Acad. Press, London,2, 915–945.Google Scholar
  49. Humm, H. J., 1979. The marine algae of Virginia. Univ. Press Virginia, Charlottesville, 263 pp.Google Scholar
  50. Irvine, D. E. G., Guiry, M. D., Tittley, I., Russell, G., 1975. New and interesting marine algae from the Shetland Isles. — Br. phycol. J.10, 57–71.Google Scholar
  51. Joosten, A. M. T. & Hoek, C. van den, 1986. World-wide relationships between red seaweed floras: a multivariate approach. — Botanica mar.24, 195–214.Google Scholar
  52. Kain (Jones), J. M., 1987. Photoperiod and temperature as triggers in the seasonality ofDelesseria sanguinea. — Helgoländer Meeresunters.41, 355–370.CrossRefGoogle Scholar
  53. Keats, D. W. & South, G. R., 1985. Aspects of the reproductive phenology ofSaccorhiza dermatodea (Phaeophyta, Laminariales) in Newfoundland. — Br. phycol. J.20, 117–122.Google Scholar
  54. Klein, B. 1987. The phenology ofDumontia contorta (Rhodophyta) studied by following individual plants in situ at Roscoff, northern Brittany. — Botanica mar.30, 187–194.Google Scholar
  55. Kornmann, P. & Sahling, P.-H., 1977. Meeresalgen von Helgoland. — Helgoländer wiss. Meeresunters.29, 1–289.CrossRefGoogle Scholar
  56. Kristiansen, A., 1984. Experimental field studies on the ecology ofScytosiphon lomentaria (Fucophyceae, Scytosiphonales) in Denmark. — Nord. J. Bot.4, 719–724.Google Scholar
  57. Kuhlenkamp, R. & Müller, D. G., 1985. Culture studies on the life history ofHaplospora globosa andTilopteris mertensii (Tilopteridales, Phaeophyceae). — Br. phycol. J.20, 301–312.Google Scholar
  58. Lawson, G. M. & John, D. M., 1977. The marine flora of the Cap Blanc peninsula: its distribution and affinities. — Bot. J. Linn. Soc.75, 99–118.Google Scholar
  59. Lawson, G. M. & John, D. M., 1982. The marine algae and coastal environment of tropical West Africa. Cramer, Vaduz, 455 pp.Google Scholar
  60. Lee, J.-A. & Brinkhuis, B. H., 1986. Reproductive phenology ofLaminaria saccharina (L.) Lamour. (Phaeophyta) at the southern limit of its distribution in the northwestern Atlantic Ocean. —J. Phycol.22, 276–285.Google Scholar
  61. Lüning, K., 1975. Kreuzungsexperimente anLaminaria saccharina von Helgoland und von der Isle of Man. — Helgoländer wiss. Meeresunters.27, 108–114.CrossRefGoogle Scholar
  62. Lüning, K., 1980a. Control of algal life-history by daylength and temperature. In: The shore environment. Ed. by J. H. Price, D. E. G. Irvine & W. F. Farnham. Acad. Press, London,2, 915–945.Google Scholar
  63. Lüning, K., 1980b. Critical levels of light and temperature regulating gametogenesis of threeLaminaria species (Phaeophyceae). — J. Phycol.16, 1–15.Google Scholar
  64. Lüning, K., 1981. Photomorphogenesis of reproduction in marine macroalgae. — Ber. dt. bot. Ges.94, 401–417.Google Scholar
  65. Lüning, K., 1984. Temperature tolerance and biogeography of seaweeds: The marine algal flora of Helgoland (North Sea) as an example. — Helgoländer Meeresunters.38, 305–317.CrossRefGoogle Scholar
  66. Lüning, K., 1985. Meeresbotanik. Thieme, Stuttgart, 375 pp.Google Scholar
  67. Lüning, K., 1986. New frond formation inLaminaria hyperborea (Phaeophyta): a photoperiodic response. — Br. phycol. J.21, 269–273.Google Scholar
  68. Lüning, K., Chapman, A. R. O. & Mann, K. H., 1978. Crossing experiments of the non-digitate complex ofLaminaria from both sides of the Atlantic. — Phycologia17, 293–298.Google Scholar
  69. Lüning, K., Guiry, M. D. & Masuda, M., 1987. Upper temperature tolerance of North Atlantic and North Pacific geographical isolates ofChondrus species (Rhodophyta). — Helgoländer Meeresunters.41, 297–306.Google Scholar
  70. Maggs, C. A., 1986. Scottish marine macro-algae: a distributional checklist, biogeographical analysis and literature abstract. — Rep. Nat. Cons. Couns., Petersborough,635, 1–137.Google Scholar
  71. Maggs, C. A. & Guiry, M. D., 1987. Environmental control of macroalgal phenology. In: Plant life in aquatic and amphibious habitats. Ed. by R. M. M. Crawford. Blackwell, Oxford, 359–373.Google Scholar
  72. Maier, I., 1984. Culture studies ofChorda tomentosa (Phaeophyta, Laminariales). — Br. phycol. J.19, 95–106.Google Scholar
  73. Mathieson, A. C. & Dawes, C. J., 1975. Seasonal studies of Florida sublittoral marine algae. — Bull. mar. Sci.25, 46–65.Google Scholar
  74. Mathieson, A. C. & Dawes, C. J., 1986. Photosynthetic responses of Florida seaweeds to light and temperature: a physiological survey. — Bull. mar. Sci.38, 512–524.Google Scholar
  75. McLachlan, J. & Bird, C. J., 1984. Geographical and experimental assessment of the distribution ofGracilaria species (Rhodophyta: Gigartinales) in relation to temperature. — Helgoländer Meeresunters.38, 319–334.CrossRefGoogle Scholar
  76. Meunier, A., 1965. Etude de la végétation algale de Cap Saint-Martin (Biarritz). Thése, Univ., Bordeaux, 178 pp.Google Scholar
  77. Müller, D. G., 1979. Genetic affinity ofEctocarpus siliculosus (Dillw.) Lyngb. from the Mediterranean, North Atlantic and Australia. — Phycologia,18, 312–318.Google Scholar
  78. Müller, D. G. & Luthe, N. M., 1981. Hormonal interaction in sexual reproduction ofDesmarestia aculeata (Phaeophyceae). — Br. phycol. J.16, 351–356.Google Scholar
  79. Norton, T. A., 1972. The development ofSaccorhiza dermatodea in culture. — Phycologia11, 81–86.Google Scholar
  80. Norton, T. A., 1977. Experiments of the factors influencing the geographical distribution ofSaccorhiza polyschides andSaccorhiza dermatodea. — New Phytologist78, 625–635.Google Scholar
  81. Norton, T. A., 1986. Provisional atlas of British seaweeds. British Phycological Society and the Biological Research Centre, Port Erin, 164 pp.Google Scholar
  82. Novaczek, I., 1987. Periodicity of epiphytes onZostera marina in two embayments of the southern Gulf of St. Lawrence. — Can. J. Bot.65, 1676–1681.Google Scholar
  83. Novaczek, I., Bird, C. J. & McLachlan, J., 1986a. The effect of temperature on development and reproduction inChorda filum andC. tomentosa (Phaeophyceae, Laminariales) from Nova Scotia. — Can. J. Bot.64, 2414–2420.Google Scholar
  84. Novaczek, I., Bird, C. J. & McLachlan, J., 1986b. Culture and field studies ofStilophora rhizodes (Phaeophyceae, Chordariales) from Nova Scotia, Canada. — Br. phycol. J.21, 407–416.Google Scholar
  85. Novaczek, I., Bird, C. J. & McLachlan, J., 1987. Phenology and temperature tolerance of the red algaeChondria baileyana, Lomentaria baileyana, Griffithsia globulifera andDasya baillouviana in Nova Scotia. — Can. J. Bot.65, 57–62.Google Scholar
  86. Novaczek, I. & McLachlan, J., 1987 Correlation of temperature and daylength response ofSphaerotrichia divaricata (Phaeophyta, Chordariales) with field phenology in Nova Scotia and distribution in North America. — Br. phycol. J.22, 215–219.Google Scholar
  87. Orris, P. K. & Taylor, J. E., 1973. A floristic and ecological survey. The macro-algae of Rehoboth Bay, Delaware. — Botanica mar.16, 180–192.Google Scholar
  88. Peckol, P., 1982. Seasonal occurrence and reproduction of some marine algae of the continental shelf, North Carolina. — Botanica mar.25, 185–190.Google Scholar
  89. Peckol, P. & Searles, R. B., 1984. Temporal and spatial patterns of growth and survival of invertebrate and algal populations of a North Carolina continental shelf community. — Estuar. coast. Shelf Sci.18, 133–143.Google Scholar
  90. Peters, A. F. & Müller, D. G., 1986. Sexual reproduction ofStilophora rhizodes (Phaeophyceae, Chordariales) in culture. — Br. phycol. J.21, 417–423.Google Scholar
  91. Pielou, E. C., 1977. The latitudinal spans of seaweed species and their patterns of overlap. —J. Biogeogr.4, 299–311.Google Scholar
  92. Printz, H., 1926. Die Algenvegetation des Trondhjemsfjordes. — Skr. norske VidenskAkad. (Mat.-naturv. Kl.)5, 1–274.Google Scholar
  93. Rietema, H., 1982. Effects of photoperiod and temperature on macrothallus initiation inDumontia contorta (Rhodophyta). — Mar. Ecol. Prog. Ser.8, 187–196.Google Scholar
  94. Rietema, H. & Breeman, A. M., 1982. The regulation of the life history ofDumontia contorta in comparison to that of several other Dumontiaceae (Rhodophyta). — Botanica mar.25, 569–576.Google Scholar
  95. Rietema, H. & Hoek, C. van den, 1981. The life history ofDesmotrichum undulatum (Phaeophyceae) and its regulation by temperature and light conditions. — Mar. Ecol. Prog. Ser.4, 321–335.Google Scholar
  96. Rietema, H. & Hoek, C. van den, 1984. Search for possible latitudinal ecotypes inDumontia contorta (Rhodophyta). — Helgoländer Meeresunters.38, 389–399.CrossRefGoogle Scholar
  97. Rueness, J., 1977. Norsk Algeflora. Universitetsforlaget, Oslo, 266 pp.Google Scholar
  98. Rueness, J. & Asen, P. A., 1982. Field and culture observations on the life history ofBonnemaisonia asparagoides (Woodw.) C. Ag. (Rhodophyta) from Norway. — Botanica mar.25, 577–587.Google Scholar
  99. Searles, R. B., 1984. Seaweed biogeography of the mid-Atlantic coast of the United States. —Helgoländer Meeresunters.38, 259–271.CrossRefGoogle Scholar
  100. Searles, R. B. & Schneider, C. W., 1978. A checklist and bibliography of North Carolina seaweeds. —Botanica mar.21, 99–108.Google Scholar
  101. Sears, J. R. & Wilce, R. T., 1975. Sublittoral, benthic marine algae of southern Cape Cod and adjacent islands: seasonal periodicity, associations, diversity, and floristic composition. — Ecol. Monogr.45, 337–365.Google Scholar
  102. South, G. R. & Burrows, E. M., 1967. Studies on marine algae of the British Isles. 5.Chorda filum (L.) Stackh. — Br. phycol. Bull.3, 379–402.Google Scholar
  103. South, G. R. & Tittley, I., 1986. A checklist and distributional index of the benthic marine algae of the North Atlantic Ocean. British Museum (Natural History), London, 76 pp.Google Scholar
  104. Stephenson, T. A. & Stephenson, A., 1972. Life between tide marks on rocky shores. Freeman, San Francisco, 425 pp.Google Scholar
  105. Stewart, J. G., 1984. Algal distributions and temperature: test of a hypothesis based on vegetative growth rates. — Bull. Sth. Calif. Acad. Sci.83, 57–68.Google Scholar
  106. Strömgren, T., 1977. Short-term effects of temperature upon growth of intertidal Fucales. — J. exp. mar. Biol. Ecol.29, 181–195.Google Scholar
  107. Strömgren, T., 1983. Temperature-length growth strategies in the littoral algaAscophyllum nodosum (L.). — Limnol. Oceanogr.28, 515–521.Google Scholar
  108. Sundene, O., 1963. Reproduction and ecology ofChorda tomentosa. — Nytt. Mag. Bot.10, 159–167.Google Scholar
  109. Taylor, W. R., 1960. Marine algae of the eastern tropical and subtropical coasts of the Americas. Univ. Press, Michigan, 870 pp.Google Scholar
  110. U.S. Navy, 1974. Marine climatic atlas of the world. Vol. 1. North Atlantic Ocean. U.S. Government Printing Office, Washington.Google Scholar
  111. U.S. Navy, 1981. Marine climatic atlas of the world. Vol. 9. World-wide means and standard deviations. U.S. Government Printing Office, Washington.Google Scholar
  112. Weigel, H.-P., 1978. Temperature and salinity observations from Helgoland Reede in 1976. — Annls biol., Copenh.33, 35.Google Scholar
  113. West, J. A., 1972. Environmental regulation of reproduction inRhodochorton purpureum. In: Contributions to the systematics of benthic marine algae of the North Pacific. Ed. by I. A. Abbott, J. A. West & M. H. Hommersand. Jap. Soc. Phycol., Kobe, 213–230.Google Scholar
  114. Whittick, A., 1977. The reproductive ecology ofPlumaria elegans (Bonnem.) Schmitz (Ceramiaceae: Rhodophyta) at its northern limit in the western Atlantic. — J. exp. mar. Biol. Ecol.29, 223–230.CrossRefGoogle Scholar
  115. Whittick, A., 1978. The life history and phenology ofCallithamnion corymbosum (Rhodophyta: Ceramiaceae) in Newfoundland. — Can. J. Bot.56, 2497–2499.Google Scholar
  116. Whittick, A., 1981. Culture and field studies onCallithamnion hookeri (Dillw.) S. F. Gray (Rhodophyta: Ceramiaceae) from newfoundland. — Br. phycol. J.16, 289–295.Google Scholar
  117. Wilce, R. T., 1959. The marine algae of the Labrador peninsula and northwest Newfoundland (ecology and distribution). — Bull. natn. Mus. Can.158, 103 pp.Google Scholar
  118. Wynne, M. J., 1986. A checklist of benthic marine algae of the tropical and subtropical western Atlantic. — Can. J. Bot.64, 2239–2281.Google Scholar
  119. Wynne, M. J. & Ballantine, D. L., 1986. The genusHypoglossum (Kützing) (Delesseriaceae, Rhodophyta) in the tropical western Atlantic, includingH. anomalum sp. nov. — J. Phycol.22, 185–193.Google Scholar
  120. Yarish, C., Breeman, A. M. & Hoek, C. van den, 1984. Temperature, light and photoperiod responses in some Northeast American and West European endemic rhodophytes in relation to their geographic distribution. — Helgoländer Meeresunters.38, 273–304.CrossRefGoogle Scholar
  121. Yarish, C., Breeman, A. M. & Hoek, C. van den, 1986. Survival strategies and temperature responses of seaweeds belonging to different distribution groups. — Botanica mar.29, 215–230.Google Scholar
  122. Yarish, C., Kirkman, H. & Lüning, K., 1987. Lethal exposure times and preconditioning to upper temperature limits of some temperate North Atlantic red algae. — Helgoländer Meeresunters.41, 323–327.CrossRefGoogle Scholar

Copyright information

© Biologische Anstalt Helgoland 1988

Authors and Affiliations

  • A. M. Breeman
    • 1
  1. 1.Department of Marine Biology, Biological CentreRijksuniversiteit GroningenHaren (Gn)The Netherlands

Personalised recommendations