Helgoländer Meeresuntersuchungen

, Volume 44, Issue 3–4, pp 335–352

Mussel beds — amensalism or amelioration for intertidal fauna?

  • Sabine Dittmann
Article

Abstract

The faunal assemblages of a mussel bed (Mytilus edulis L.) and ambient sandflat were compared to study how a bioherm of suspension feeding organisms affects benthic communities in a tidal flat. During a survey of mussel beds in the Wadden Sea at the island of Sylt (North Sea), a total of 52 macrofaunal species and 44 meiobenthic plathelminth species were detected. They occupied different microhabitats in the mussel bed. 56% of the macrofauna species were dwelling in the sediment beneath the mussels and 42% were epibenthic or epiphytic. The latter were restricted in their occurrence to the mussel bed. Along a transect from the sandflat to the mussel bed the mean species densities of macrofauna did not differ significantly, while abundances were significantly lower in the mussel bed than in the sandflat. The composition of the assemblages shifted from a dominance of Polychaeta in the sandflat to Oligochaeta in the mussel bed. Surface filter-feeding polychaetes of the sandflat (Tharyx marioni) were displaced by deposit feeding polychaetes under the mussel cover (Capitella capitata, Heteromastus filiformis). The total meiobenthic density was lower and single taxa (Ostracoda, Plathelminthes, Nematoda) were significantly less abundant in the mud of the mussel bed. The plathelminth assemblage was dominated by grazing species (Archaphanostoma agile), and differed in community structure from a sandflat aseemblage. An amensalistic relationship was found between the suspension-feeding mussels and suspension-feeding infauna, while deposit-feeders were enhanced. The presence of epibenthic microhabitats results in a variety of trophic groups co-occurring in a mussel bed. This is hypothesized as trophic group amelioration and described as an attribute of heterotrophic reefs.

Literature Cited

  1. Armonies, W. & Hellwig, M., 1986. Quantitative extraction of living meiofauna from marine and brackish muddy sediments. — Mar. Ecol. Prog. Ser.29, 37–43.Google Scholar
  2. Asmus, H., 1987. Secondary production of an intertidal mussel bed community related to its storage and turnover compartments. — Mar. Ecol. Prog. Ser.39, 251–266.Google Scholar
  3. Beukema, J. J., 1976. Biomass and species richness of the macrobenthic animals living on the tidal flats of the Dutch Wadden Sea. — Neth. J. Sea Res.10, 236–261.Google Scholar
  4. Beukema, J. J., 1979. Biomass and species richness of the macrobenthic animals living on a tidal flat area in the Dutch Wadden Sea: effects of a severe winter. — Neth. J. Sea Res.13, 203–223.Google Scholar
  5. Beukema, J. J. & Vlas, J. de, 1989. Tidal-current transport of thread-drifting postlarval juveniles of the bivalveMacoma balthica from the Wadden Sea to the North Sea. — Mar. Ecol. Prog. Ser.52, 193–200.Google Scholar
  6. Brenchley, G. A., 1982. Mechanisms of spatial competition in marine soft-bottom communities. —J. exp. mar. Biol. Ecol.60, 17–33.CrossRefGoogle Scholar
  7. Commito, J. A., 1987. Adult-larval interactions: predictions, mussels and cocoons. — Estuar. coast. Shelf Sci.25, 599–606.CrossRefGoogle Scholar
  8. Commito, J. A. & Boncavage, E. M., 1989. Suspension-feeders and coexisting infauna: an enhancement counterexample. — J. exp. mar. Biol. Ecol.125, 33–42.CrossRefGoogle Scholar
  9. Dittmann, S., 1984. Die Turbellarienfauna der Schlicksedimente im Königshafen der Nordseeinsel Sylt. Dipl.-Arb., Univ. Göttingen, 93 pp.Google Scholar
  10. Dittmann, S. 1987. Die Bedeutung der Biodeposite für die Benthosgemeinschaft der Wattsedimente. Unter besonderer Berücksichtigung der MiesmuschelMytilus edulis L. Diss., Univ. Göttingen, 182 pp.Google Scholar
  11. Dittmann, S. & Reise, K., 1985. Assemblage of free-living Plathelminthes on an intertidal mud flat in the North Sea. — Microfauna mar.2, 95–115.Google Scholar
  12. Dubilier, N., 1988. H2S — a settlement cue or a toxic substance forCapitella sp. I larvae? — Biol. Bull. mar. biol. Lab., Woods Hole174, 30–38.Google Scholar
  13. Fauchald, K. & Jumars, P. A., 1979. The diet of worms: a study on polychaete feeding guilds. —Oceanogr. mar. Biol.17, 193–284.Google Scholar
  14. Gee, J. M., Warwick, R. M., Schaaning, M., Berge, J. A. & Ambrose, W. G., 1985. Effects of organic enrichment on meiofaunal abundance and community structure in sublittoral soft sediments. —J. exp. mar. Biol. Ecol.91, 247–262.CrossRefGoogle Scholar
  15. Grassle, J. E. & Grassle, J. P., 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. — J. mar. Res.32, 254–289.Google Scholar
  16. Gusky, M., 1987. Populationsstrukturen und Beutespektrum der Einsiedlerkrebse (Pagurus bernhardus) im Eulittoral und Sublittoral des Wattenmeeres. Dipl.-Arb., Univ. Göttingen, 89 pp.Google Scholar
  17. Hagmeier, A. & Kändler, R., 1927. neue Untersuchungen im nordfriesischen Wattenmeer und auf den fiskalischen Austernbänken. — Wiss. Meeresunters. (Abt. Helgoland)16, 1–90.Google Scholar
  18. Hunt, J. H., Ambrose, W. G. & Peterson, C. H., 1987. Effects of the gastropod,Ilyanassa obsoleta (Say), and the bivalve,Mercenaria mercenaria (L.), on larval settlement and juvenile recruitment of infauna. — J. exp. mar. Biol. Ecol.108, 229–240.CrossRefGoogle Scholar
  19. Hurlbert, S. H., 1971. The non-concept of species diversity: a critique and alternative parameters. —Ecology52, 577–586.Google Scholar
  20. Hüttel, M., 1984. Zur Ökologie aasfressender Wattbewohner. Untersuchungen anCarcinus maenas undAnaitides maculata. Dipl.-Arb., Univ. Kiel, 82 pp.Google Scholar
  21. Kaspar, M. F., Gillespie, P. A., Boyer, I. C. & Mackenzie, M., 1985. Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marborough Sounds, New Zealand. — Mar. Biol.85, 127–136.CrossRefGoogle Scholar
  22. Kosfeld, C., 1989. Mikrobieller Abbau von Faeces der Miesmuschel (Mytilus edulis L.). Diss., Univ. Kiel, 131 pp.Google Scholar
  23. Larsen, P. F., 1985. The benthic macrofauna associated with the oyster reefs of the james River Estuary, Virginia, USA. — Int. Revue ges. Hydrobiol.70, 797–814.Google Scholar
  24. Margalef, R., 1958. Information theory in ecology. — Gen. Syst.3, 36–71.Google Scholar
  25. Mattson, J. & Linden, O., 1983. Benthic macrofauna succession under mussels,Mytilus edulis L. (Bivalvia) cultured on hanging long-lines. — Sarsia68, 97–102.Google Scholar
  26. Mileikovsky, S. A., 1974. On predation of pelagic larvae and early juveniles of marine bottom invertebrates by adult benthic invertebrates and their passing alive through their predators. —Mar. Biol.26, 303–311.CrossRefGoogle Scholar
  27. Pearson, T. H. & Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. — Oceanogr. mar. Biol.16, 229–311.Google Scholar
  28. Pielou, E. C., 1966. The measurement of diversity in different types of biological collections. —J. theor. Biol.13, 131–144.CrossRefGoogle Scholar
  29. Posey, M. H., 1986. Changes in the benthic community associated with dense beds of a burrowing deposit-feederCallianassa californiensis. — Mar. Ecol. Prog. Ser.,31, 15–22.Google Scholar
  30. Reise, K., 1981. High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. — Helgoländer Meeresunters.34, 413–425.CrossRefGoogle Scholar
  31. Reise, K., 1983. Biotic enrichment of intertidal sediments by experimental aggregates of the deposit-feeding bivalveMacoma balthica. — Mar. Ecol. Prog. Ser.12, 229–236.Google Scholar
  32. Reise, K., 1984. Free-living Plathelminthes (Turbellaria) of a marine sand flat: an ecological study. —Microfauna mar.1, 1–62.Google Scholar
  33. Reise, K., 1985. Tidal flat ecology. Springer, Berlin, 191 pp.Google Scholar
  34. Renkonen, O., 1938. Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. — Annls zool. Soc. zool.-bot. fenn.6, 1–231.Google Scholar
  35. Rhoads, D. C. & Young, D. K., 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. — J. mar. Res.28, 150–178.Google Scholar
  36. Riesen, W. & Reise, K., 1982. Macrobenthos of the subtidal Wadden Sea: revisited after 55 years. —Helgoländer Meeresunters.35, 409–423.CrossRefGoogle Scholar
  37. Roman, G. & Perez, A., 1982. Estudio del mejillon y de su epifauna en los cultivos flotantes de los Rio de Arosa. IV. Evolucion de la communidad. — Boln Inst. esp. Oceanogr.7, 279–296.Google Scholar
  38. Rosenberg, R. & Loo, L.-O., 1983. Energy-flow in aMytilus edulis culture in western Sweden. —Aquaculture35, 151–161.CrossRefGoogle Scholar
  39. Sachs, L., 1984. Angewandte Statistik. Springer, Berlin, 552 pp.Google Scholar
  40. Scheltema, R. S., 1974. Biological interactions determining larval settlement of marine invertebrates. — Thalassia jugosl.10, 263–296.Google Scholar
  41. Scherer, B. & Reise, K., 1981. Significant predation on micro- and macrobenthos by the crabCarcinus maenas L. in the Wadden Sea. — Kieler Meeresforsch. (Sonderh.)5, 490–500.Google Scholar
  42. Sørensen, T. A., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. — Biol. Skr.5, 1–34.Google Scholar
  43. Suchanek, T. H., 1980. Diversity in natural and artificial mussel bed communities ofMytilus californianus. — Am. Zool.20, 807.Google Scholar
  44. Tenore, K. R. & Gonzales, N., 1976. Food chain patterns in the Ria de Arosa, Spain: an area of intense mussel aquaculture. In: Proceedings of the 10th European symposium on marine biology. Ed. by G. Persoone & E. Jaspers. Wetteren, Universa Press,2, 601–619.Google Scholar
  45. Thrush, S. F., 1988. The comparison of marobenthic recolonization patterns near and away from crab burrows on a sublittoral sandflat. — J. mar. Res.46, 669–681.Google Scholar
  46. Tsuchiya, M. & Nishihira, M., 1985. Islands ofMytilus as a habitat for small intertidal animals: effect of island size on community structure. — Mar. Ecol. Prog. Ser.25, 71–81.Google Scholar
  47. Tsuchiya, M. & Nishihira, M., 1985. Islands ofMytilus as a habitat for small intertidal animals: effect ofMytilus age structure on the species composition of the associated fauna and community organization. — Mar. Ecol. Prog. Ser.31, 171–178.Google Scholar
  48. Verwey, J., 1952. On the ecology and distribution of cockle and mussel in the Dutch Wadden Sea, their role in sedimentation and the source of their food supply. — Archs neerl. Zool.10, 171–239.Google Scholar
  49. Wohlenberg, E., 1937. Die Wattenmeer-Lebensgemeinschaft im Königshafen von Sylt. — Helgoländer wiss. Meeresunters.1, 1–92.CrossRefGoogle Scholar
  50. Woodin, S. A., 1976. Adult-larval interactions in dense infaunal assemblages: patterns of abundance. — J. mar. Res.34, 25–41.Google Scholar
  51. Ziegelmeier, E., 1964. Einwirkungen des kalten Winters 1962/63 auf das Makrobenthos im Ostteil der Deutschen Bucht. — Helgoländer wiss. Meeresunters.10, 276–282.CrossRefGoogle Scholar
  52. Ziegelmeier, E., 1970. Über Massenvorkommen verschiedener makrobenthaler Wirbelloser während der Wiederbesiedlungsphase nach Schädigung durch “katastrophale” Umwelteinflüsse. —Helgoländer wiss. Meeresunters.21, 9–20.CrossRefGoogle Scholar

Copyright information

© Biologische Anstalt Helgoland 1990

Authors and Affiliations

  • Sabine Dittmann
    • 1
    • 2
  1. 1.II. Zoologisches Institut der Universität GöttingenGöttingenGermany
  2. 2.Biologische Anstalt HelgolandList/SyltGermany
  3. 3.Australian Institute of Marine ScienceTownsvilleAustralia

Personalised recommendations