Helgoländer Meeresuntersuchungen

, Volume 44, Issue 2, pp 219–263 | Cite as

Biological interactions and their role in community structure in the rocky intertidal of Helgoland (German Bight, North Sea)

  • Klaus Janke


Over 3 successive seasonal cycles (April 1986 to October 1988), field experiments were established within 3 intertidal levels in the sheltered rocky intertidal of Helgoland (North Sea, German Bight). Competitors for space (Mytilus edulis, macroalgae), herbivores (Littorina spp.) and predators (Carcinus maenas) were either excluded from areas (0.25 m2) covered by undisturbed communities or enclosed at natural densities on areas that were cleared before of animals and plants. All the experimental fields (each 0.25 m2) were covered by cages with 4 mm gauze at the sides and a plexiglas top. The results of the experiments in the upper intertidal (occupied byLittorina spp. andEnteromorpha) showed that a natural density of herbivores could not prevent algal settlement and had only little influence on algal growth. Instead abiotic factors (storms, algae washed ashore) decreased the stock of the green algae. Experiments in the mid intertidal, dominated byMytilus (50% cover),Fucus spp. (20%) and grazingL. littorea (100 ind. m−2) showed that community structure was directly changed both by grazing periwinkles and by competition for space between mussels and macroalgae. WheneverLittorina was excluded, the canopy ofFucus spp. increased continuously and reached total cover within two years. In addition to the increase ofFucus spp., the rock surface and the mussel shells were overgrown byUlva pseudocurvata, which covered the experimental fields during parts of the summer in the absence of herbivores. As soon as perennial species (fucoids) covered most of the experimental areas, the seasonal growth ofUlva decreased drastically. Presence and growth of macroalgae were also controlled by serious competition for space with mussels. EstablishedMytilus prevented the growth of all perennial and ephemeral algae on the rocks. However, the shells of the mussels provided free space for a new settlement ofFucus andUlva. In the lower intertidal (dominated by total algal cover ofF. serratus, herbivores such asL. littorea andL. mariae, and increasing number of predators such asCarcinus), the feeding activity of herbivores can neither prevent the settlement of the fucoid sporelings nor reduce the growth of macroalgae.F. serratus achieved a total canopy on the rock within one year. Doubled density of herbivores prevented the settlement ofFucus and most of the undercover algae. Predation byCarcinus onLittorina spp. had little influence on the herbivore community patterns. However, the crabs supported the establishment of macroalgae by excluding the mussels from the lower intertidal. In summary, the community organization and maintenance in the mid and lower intertidal is influenced to a high degree by biological interactions. Whereas both the relatively important herbivory byL. littorea and competition for space between mussels and macroalgae dominate in the mid intertidal, predation reaches its highest relative degree of importance for community structure in the lower intertidal.


Macroalgae Mytilus Edulis German Bight Natural Density Algal Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Alstyne, K. L., van, 1988. Herbivore grazing increases polyphenolic defenses in the intertidal brown algaFucus distichus—Ecology69, 655–663.Google Scholar
  2. Anonymus, 1981. Amoco Cadiz. Fates and effects of the oil spill. Proceedings of the international symposium, Brest November 19–22, 1979. Centre national l'exploitation des océans, Paris, 882 pp.Google Scholar
  3. Baker, J. M. & Wolff, W. J. (Ed.), 1987. Biological surveys of estuaries and coasts. Cambridge Univ. Press, Cambridge, 449 pp.Google Scholar
  4. Bakker, K., 1959. Feeding habits and zonation in some marine snails.—Archs néerl. Zool.13, 230–257.Google Scholar
  5. Ballantine, W. J., 1961. A biologically defined exposure scale for the comparative description of rocky shores.—Fld Stud.1, 1–19.Google Scholar
  6. Barkman, J. J., 1955. On the distribution and ecology ofLittorina obtusata and its subspecific units. —Archs néerl. Zool.11, 22–86.Google Scholar
  7. Barnett, B. E., 1979. A laboratory study of predation by the dogwhelkNucella lapillus on the barnaclesElminius modestus andBalanus balanoides.—J. mar. biol. Ass. U. K.59, 299–306.Google Scholar
  8. Bertness, M. D., Yund, P. O. & Brown, A. F., 1983. Snail grazing and the abundance of algal crusts on a sheltered New England shore.—J. exp. mar. Biol. Ecol.71, 147–164.Google Scholar
  9. Binot, F., 1988. Strukturentwicklung des Salzkissens Helgoland.—Z. dt. geol. Ges.139, 51–62.Google Scholar
  10. Branch, G. M., 1981. The biology of the limpets: physical factors, energy flow and ecological interactions.—Oceanogr. mar. Biol.19, 235–380.Google Scholar
  11. Braun-Blanquet, J., 1964. Pflanzensoziologie. Springer, Wien, 865 pp.Google Scholar
  12. Caffey, H. M., 1985. Spatial and temporal variation in settlement and recruitment of intertidal barnacles.—Ecol. Monogr.55, 313–332.Google Scholar
  13. Caspers, H., 1951. Rhythmische Erscheinungen in der Fortpflanzung vonClunio marinus (Dipt. Chiron.) und das Problem der lunaren Periodizität der Organismen.—Arch. Hydrobiol.18, 415–594.Google Scholar
  14. Connell, J. H., 1961. Effects of competition, predation byThais lapillus, and other factors on natural populations of the barnacleBalanus balanoides—Ecol. Monogr.31, 61–104.Google Scholar
  15. Connell, J. H., 1964. The influence of interspecific competition and other factors on the barnacleChthamalus stellatus.—Ecology42, 710–723.Google Scholar
  16. Connell, J. H., 1970. A predator-prey system in the marine intertidal region.—Ecol. Monogr.40, 49–78.Google Scholar
  17. Connell, J. H., 1975. Some mechanisms producing structure in natural communities: a model and evidence from field experiments. In: Ecology and evolution of communities. Ed. by M. L. Cody & J. M. Diamond. Belknap Press, Cambridge, Maine, 460–490.Google Scholar
  18. Connell, J. H., 1985. The consequences of variation in initial settlement vs. post settlement mortality in rocky intertidal communities.—J. exp. mar. Biol. Ecol.93, 11–45.CrossRefGoogle Scholar
  19. Connell, J. H. & Slatyer, R. O., 1977. Mechanisms of succession in natural communities and their role in community stability and organization.—Am. Nat.111, 1119–1144.CrossRefGoogle Scholar
  20. Creese, R. G. & Underwood, A. J., 1982. Analysis of inter- and intraspecific competition amongst intertidal limpets with different methods of feeding.—Oecologia53, 337–346.CrossRefGoogle Scholar
  21. Crothers, J. H., 1967. The biology of the shore crab,Carcinus maenas (L.). I. The background—anatomy, growth and life history.—Fld Stud.2, 407–434.Google Scholar
  22. Crothers, J. H., 1968. The biology of the shore crab,Carcinus maenas (L.) II. The life of the adult crab.—Fld Stud.2, 579–614.Google Scholar
  23. Crothers, J. H., 1985. Dog-whelks: An introduction to the biology ofNucella lapillus (L.).—Fld Stud.6, 291–360.Google Scholar
  24. Cubit, J. D., 1984. Herbivory and seasonal abundance of algae on a high intertidal rocky shore.—Ecology65, 1904–1917.Google Scholar
  25. Dalby, D. H., Cowell, E. B., Syratt, W. J. & Crothers, J. H., 1978. An exposure scale for marine shores in western Norway.—J. mar. biol. Ass. U.K.58, 975–996.Google Scholar
  26. Dayton, P. K., 1971. Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community.—Ecol. Monogr.41, 351–389.Google Scholar
  27. Dayton, P. K., 1975. Experimental evaluation of ecological dominance in a rocky intertidal algal community.—Ecol. Monogr.45, 137–159.Google Scholar
  28. DHI, 1987. Hoch- und Niedrigwasserzeiten für die Deutsche Bucht und die oberen Flußgebiete 1988 DHI, Hamburg, 112 pp.Google Scholar
  29. Dongen, A., van, 1956. The preference ofLittorina obtusata L. for Fucacea.—Archs néerl. Zool.11, 373–386.Google Scholar
  30. Doty, M. S., 1946. Critical tide factors that are correlated with the vertical distribution of marine algae and other organisms along the Pacific coast.—Ecology27, 315–328.Google Scholar
  31. Elner, R. W., 1978. The mechanisms of predation by the shore crab,Carcinus maenas (L.) on the edible mussel,Mytilus edulis L.—Oecologia36, 333–344.CrossRefGoogle Scholar
  32. Elner, R. W. & Hughes, R. N., 1978. Energy maximisation in the diet of the shore crab,Carcinus maenas.—Ecology47, 103–116.Google Scholar
  33. Evans, R. G., 1948. The lethal temperatures of some common molluscs.—J. Anim. Ecol.17, 165–173.Google Scholar
  34. Feare, C. J. & Summers, R. W., 1985. Birds as predators on rocky shores. In: The ecology of rocky coasts. Ed. by P. G. Moore & R. Seed. Hodder & Stoughton, London, 249–264.Google Scholar
  35. Fletcher, W. J. & Creese, R. G., 1985. Competitive interactions between co-occurring herbivorous gastropods.—Mar. Biol.86, 183–191.CrossRefGoogle Scholar
  36. Gaines, S. D. & Lubchenco, 1982. A unified approach to marine plant herbivore interactions. II. Biogeography.—A. Rev. Ecol. Syst.13, 111–138.Google Scholar
  37. Gillandt, L., 1979. Zur Ökologie der Polychaeten des Helgoländer Felslitorals.—Helgoländer wiss. Meeresunters.32, 1–35.CrossRefGoogle Scholar
  38. Gibson, R. N., 1982. Recent studies on the biology of intertidal fishes.—Oceanogr. mar. Biol.20, 363–414.Google Scholar
  39. Goodwin, B. J. & Fish, J. D., 1977. Inter- and intraspecific variation inLittorina obtusata andLittorina mariae (Gastropoda).—J. moll. Stud.43, 241–254.Google Scholar
  40. Hagmeier, A., 1930. Die Besiedelung des Felsstrandes und der Klippen von Helgoland. I. Der Lebensraum.—Wiss. Meeresunters. (Abt. Helgoland)15(18a), 1–35.Google Scholar
  41. Hartnoll, R. G. & Hawkins, S. J., 1980. Monitoring rocky shore communities: a critical look at spatial and temporal variation.—Helgoländer Meeresunters.33, 484–494.Google Scholar
  42. Hartnoll, R. G. & Hawkins, S. J., 1985. Patchiness and fluctuations on moderately exposed rocky shores.—Ophelia24, 53–63.Google Scholar
  43. Hawkins, S. J. & Hartnoll, R. G., 1983. Grazing of intertidal algae by marine invertebrates.—Oceanogr. mar. Biol.21, 195–282.Google Scholar
  44. Heil, K. P. & Eichelberg, D., 1983. Untersuchungen zum Harnsäuremetabolismus vonLittorina littorea (Gastropoda).—Helgoländer Meeresunters.36, 465–472.Google Scholar
  45. Hughes, R. N., 1985. Rocky shore communities: catalysts to understand predation. In: The ecology of rocky coasts. Ed. by P. G. Moore & R. Seed. Hodder & Stoughton, London, 223–233.Google Scholar
  46. Hughes, R. N. & Drewett, D., 1985. A comparison of the foraging behaviour of dogwhelks,Nucella lapillus (L.), feeding on barnacles or mussels on the shore.—J. moll. Stud.51, 73–77.Google Scholar
  47. Hughes, R. N. & Dunkin, S. de B., 1984a. Behavioural components of prey selection by dogwhelks,Nucella lapillus (L.), feeding on musselsMytilus edulis L. in the laboratory.—J. exp. mar. Biol. Ecol.77, 45–68.CrossRefGoogle Scholar
  48. Hughes, R. N. & Dunkin, S. de B., 1984b. Effect of dietary history on selection of prey and foraging behaviour among patches of prey, by the dogwhelk,Nucella lapillus (L.).—J. exp. mar. Biol. Ecol.79, 159–172.CrossRefGoogle Scholar
  49. Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field experiments.—Ecol. Monogr.54, 187–211.Google Scholar
  50. Jackson, J. B. C., 1977a. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies.—Am. Nat.111, 743–767.CrossRefGoogle Scholar
  51. Jackson, J. B. C., 1977b. Habitat area, colonization and development of epibenthic community structure. In: Ecology of benthic organisms. Ed. by B. F. Keegan, P. O. Ceidigh & J. P. S. Boaden. Pergamon Press, New York, 349–358.Google Scholar
  52. Janke, K., 1986. Die Makrofauna und ihre Verteilung im Nordost-Felswatt von Helgoland.—Helgoländer Meeresunters.40, 1–55.Google Scholar
  53. Jernakoff, P., 1985a. Interactions between the limpetPatelloida latistrigata and algae on an intertidal rock platform.—Mar. Ecol. Prog. Ser.23, 71–78.Google Scholar
  54. Jernakoff, P., 1985b. An experimental evaluation of the influence of barnacles, crevices and seasonal patterns of grazing on algal diversity and cover in an intertidal barnacle zone.—J. exp. mar. Biol. Ecol.88, 287–302.CrossRefGoogle Scholar
  55. Jones, W. E., Beveridge, S., McConnell, B., Mark-Smith, S., Mitchell, J. & Fletcher, A., 1980. Methods of data collection and processing in rocky intertidal monitoring. In: The shore environment. I. Methods. Ed. by J. H. Price, D. E. G. Irvine & W. Farnham. Acad. Press, London, 137–170.Google Scholar
  56. Kay, A. M. & Keough, M. J., 1981. Occupation of patches in the epifaunal communities on pier pilings and the bivalvePinna bicolor at Edithburgh, South Australia.—Oecologia48, 123–130.CrossRefGoogle Scholar
  57. Keser, M. & Larson, B. R., 1984. Colonization and growth dynamics of three species ofFucus.—Mar. Ecol. Prog. Ser.15, 125–134.Google Scholar
  58. Keser, M., Vadas, R. L. & Larson, B. R., 1981. Regrowth ofAscophyllum nodosum andFucus vesiculosus under various harvesting regimes in Maine, U.S.A.—Botanica mar.24, 29–38.Google Scholar
  59. Kitching, J. A., Sloane, J. F. & Ebling, F. J., 1959. The ecology of Lough Ine. VIII. Mussels and their predators.—J. Anim. Ecol.28, 331–341.Google Scholar
  60. Kitting C. L., 1980. Herbivore plant interactions of individual limpets maintaining a mixed diet of intertidal marine algae.—Ecol. Monogr.50, 527–550.Google Scholar
  61. Kornmann, P. & Sahling, P. H., 1977. Meeresalgen von Helgoland.—Helgoländer wiss. Meeresunters.29, 1–289.CrossRefGoogle Scholar
  62. Kronberg, I., 1983. Ökologie der Schwarzen Zone im marinen Felslitoral. Monographie eines extremen Lebensraumes. Diss., Univ. Kiel, 237 pp.Google Scholar
  63. Kronberg, I., 1987. Accuracy of species and abundance minimal areas determined by similarity area curves.—Mar. Biol.96, 555–562.CrossRefGoogle Scholar
  64. Krüß, A., 1988. Die benthische Fischfauna des Helgoländer Felssockels. Ein Beitrag zur Biologie und Ökologie der häufigen Arten. Dipl.-Arb., Univ. Karlsruhe, 172 pp.Google Scholar
  65. Krumbein, W. E., 1975. Verwitterung, Abtragung und Küstenschutz auf der Insel Helgoland.—Abh. Verh. naturwiss. Ver. Hamburg,18/19, 5–31.Google Scholar
  66. Krumbein, W. E., 1977. Zur Frage der Verwitterung der Felsmasse der Insel Helgoland.—Abh. Verh. naturwiss. Ver. Hamburg20, 5–11.Google Scholar
  67. Lein, T. E., 1980. The effects ofLittorina littorea (Gastropoda) grazing on littoral green algae in the inner Oslofjord, Norway.—Sarsia65, 87–92.Google Scholar
  68. Levin, S. A. & Paine, R. T., 1974. Disturbance, patch formation and community structure.—Proc. ntn. Acad. Sci. U.S.A.71, 2744–2747.Google Scholar
  69. Lewis, J. R., 1961. The littoral zone on a rocky shore — a biological or a physical entity?—Oikos12, 280–301.Google Scholar
  70. Lewis, J. R., 1964. The ecology of rocky shores. Engl. Univ. Press, London, 323 pp.Google Scholar
  71. Lewis, J. R., 1977. The role of physical and biological factors in the distribution and stability of rocky shore communities. In: Biology of benthic organisms. Ed. by B. F. Keegan, P. O. Ceidigh & P. J. S. Boaden, Pergamon Press, New York, 417–424.Google Scholar
  72. Lubchenco, J., 1978. Plant species diversity in a marine intertidal community: importance of herbivore food preference and algae competitive abilities.—Am. Nat.112, 23–29.CrossRefGoogle Scholar
  73. Lubchenco, J., 1980. Algae zonation in the New England rocky intertidal community: an experimental analysis.—Ecology61, 333–344.Google Scholar
  74. Lubchenco, J., 1982. Effects of grazers and algal competition on fucoid colonization in tide pools. — J. Phycol.18, 544–550.CrossRefGoogle Scholar
  75. Lubchenco, J., 1983.Littorina andFucus: effects of herbivores, substratum heterogeneity and plant escapes during succession. — Ecology64, 1116–1123.Google Scholar
  76. Lubchenco, J. & Cubit, J. D., 1980. Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. — Ecology61, 676–686.Google Scholar
  77. Lubchenco, J. & Gaines, S. D., 1981. A unified approach to marine plant-herbivore interactions. I. Populations and communities. — A. Rev. Ecol. Syst.12, 405–437.Google Scholar
  78. Lubchenco, J. & Menge, B. A., 1978. Community development and persistance in a low rocky intertidal zone. — Ecol. Monogr.48, 67–94.Google Scholar
  79. Lubchenco, J., Menge, B. B., Garrity, S. D., Lubchenco, P. J., Ashkenas, L. R., Gaines, S. D., Emlet, R., Lucas, J. & Strauss, S., 1984. Structure, persistance and role of consumers in a tropical rocky intertidal community (Taboguilla Island, Bay of Panama). — J. exp. mar. Biol. Ecol.78, 23–73.CrossRefGoogle Scholar
  80. Lüning, K., 1970. Tauchuntersuchungen zur Vertikalverteilung der sublitoralen Helgoländer Algenvegetation. —Helgoländer wiss. Meeresunters.21, 271–291.CrossRefGoogle Scholar
  81. Lüning, K., 1985. Meeresbotanik, Thieme, Stuttgart, 375 pp.Google Scholar
  82. Mann, K. H. & Clark, R. B., 1978. Session III. Summary and overview: long-term effects of oil spills on marine intertidal communities. — J. Fish. Res. Bd Can.35, 791–795.Google Scholar
  83. Markham, J. W. & Munda, I. M., 1980. Algal recolonization in the rocky eulittoral of Helgoland. —Aquat. Bot.9, 33–71.CrossRefGoogle Scholar
  84. Marsh, C., 1986. Rocky intertidal community organization: the impact of avian predators on mussel recruitment. — Ecology67, 771–786.Google Scholar
  85. Menge, B. A., 1972. Foraging strategies of a starfish in relation to actual prey availability and environmental predictability. — Ecol. Monogr.42, 25–50.Google Scholar
  86. Menge, B. A., 1976. Organisation of the New England rocky intertidal community: role of predation, competition and environmental heterogeneity. — Ecol. Monogr.46, 355–393.Google Scholar
  87. Menge, B. A., 1978a. Predation intensity in a rocky intertidal community. Relation between predator foraging activity and environmental harshness. — Oecologia34, 1–16.Google Scholar
  88. Menge, B. A., 1978a. Predation intensity in a rocky intertidal community. Effect of an algae canopy, wave action and desiccation on predator feeding rates. — Oecologia34, 17–34.Google Scholar
  89. Menge, B. A., 1983. Components of predation intensity in the low zone of the New England rocky intertidal region. — Oecologia58, 141–155.CrossRefGoogle Scholar
  90. Menge, B. A. & Lubchenco, J., 1981. Community organization in temporate and tropical rocky intertidal habitats: prey refuges in relation to consumer pressure gradients. — Ecol. Monogr.51, 429–450.Google Scholar
  91. Menge, B. A. & Sutherland, J. P., 1976. Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity. — Am. Nat.110, 351–369.CrossRefGoogle Scholar
  92. Menge, B. A. & Sutherland, J. P., 1987. Community regulation: variation in disturbance, competition and predation in relation to environmental stress and recruitment. — Am. Nat.130, 730–757.CrossRefGoogle Scholar
  93. Munda, I. M. & Markham, J. W., 1982. Seasonal variations of vegetation pattern and biomass constituent in the rocky eulittoral of Helgoland. — Helgoländer wiss. Meeresunters.35, 131–151.Google Scholar
  94. Newell, R. C., 1979. Biology of intertidal animals. Mar. Ecol. Surv. Ltd, Faversham, 781 pp.Google Scholar
  95. Ortega, S., 1985. Competitive interactions among tropical intertidal limpets. — J. exp. mar. Biol. Ecol.90, 11–25.CrossRefGoogle Scholar
  96. Osman, R. W., 1977. The establishment and development of a marine epifaunal community. — Ecol. Monogr.47, 37–63.Google Scholar
  97. Paine, R. T., 1966. Food web complexity and species diversity. — Am. Nat.100, 65–75.CrossRefGoogle Scholar
  98. Paine, R. T., 1974. Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. — Oecologia,15, 93–120.CrossRefGoogle Scholar
  99. Paine, R. T., 1976. Size limited predation: an observational and experimental approach with theMytilus-Pisaster interaction. — Ecology57, 858–873.Google Scholar
  100. Paine, R. T., 1984. Ecological determinism in the competition for space. — Ecology65, 1339–1357.Google Scholar
  101. Paine, R. T. & Vadas, R. L., 1969. The effect of grazing by sea urchins,Strongylocentrotus spp. on benthic algal populations. — Limnol. Oceanogr.14, 710–719.Google Scholar
  102. Petraitis, P. S., 1987. Factors organizing rocky intertidal communities of New England: herbivory and predation in sheltered bays. — J. exp. mar. Biol. Ecol.109, 117–136.CrossRefGoogle Scholar
  103. Petraitis, C. W., 1989. The effects of the periwinkleLittorina littorea (L.) and of intraspecific competition on growth and survivorship of the limpetNotacmaea testudinalis (Müller). — J. exp. mar. Biol. Ecol.125, 99–115.CrossRefGoogle Scholar
  104. Pettitt, C. W., 1975. A review of the predators ofLittorina, especially those ofL. saxatilis (Olivi) (Gastropoda. Prosobranchia). — J. Conch., Lond.28, 343–357.Google Scholar
  105. Prüter, J., 1988. Weitere Untersuchungen zur Ernährung von Mantel- (Larus marinus) und Silbermöwe (Larus argentatus) bei Helgoland im Winterhalbjahr. — Seevögel9 (Sonderbd.), 79–91.Google Scholar
  106. Quinn, G. H. & Ryan, N. R., 1989. Competitive interactions between two species of intertidal herbivorous gastropods from Victoria, Australia. — J. exp. mar. biol. Ecol.125, 1–12.CrossRefGoogle Scholar
  107. Reise, K., 1977. Predator exclusion experiments in an intertidal mud flat. — Helgoländer wiss. Meeresunters.30, 263–271.CrossRefGoogle Scholar
  108. Reise, K., 1978. Experiments on epibenthic predation in the Wadden Sea. — Helgoländer Meeresunters.31, 55–101.Google Scholar
  109. Reise, K., 1985. Tidal flat ecology. Springer, Stuttgart, 192 pp.Google Scholar
  110. Remmert, H., 1984. Ökologie — ein Lehrbuch. Springer, Berlin, 334 pp.Google Scholar
  111. Robles, C. D. & Cubit, D., 1981. Influence of biotic factors in an upper intertidal community: dipteran larvae grazing on algae. — Ecology62, 1536–1547.Google Scholar
  112. Ropes, J. W., 1968. The feeding of the green crabCarcinus maenas (L.). — Fish. Bull. U.S.67, 183–203.Google Scholar
  113. Scheltema, R. S., 1974. Biological interactions determining larval settlement of marine invertebrates. —Thalassia jugosl.10, 263–296.Google Scholar
  114. Schmidt-Thomé, P., 1937. Der tektonische Bau und die morphologische Gestaltung von Helgoland. —Abh. Verh. naturw. Ver. Hamburg1, 215–249.Google Scholar
  115. Schonbeck, M. & Norton, T., 1978. Factors controlling the upper limits of fucoid algae on the shore. —J. exp. mar. Biol. Ecol.31, 303–313.CrossRefGoogle Scholar
  116. Schonbeck, M. & Norton, T., 1980. Factors controlling the lower limits of fucoid algae on the shore. —J. exp. mar. Biol. Ecol.43, 131–150.CrossRefGoogle Scholar
  117. Seed, R., 1969a. The ecology ofMytilus edulis L. (Lamellibranchiata) on exposed shores. I. Breeding and settlement. — Oecologia3, 277–316.Google Scholar
  118. Seed, R., 1969b. The ecology ofMytilus edulis L. (Lamellibranchiata) on exposed shores. II. Growth and mortality. — Oecologia3, 317–350.Google Scholar
  119. Sousa, W. P., 1979. Disturbance in marine boulder fields: the non-equilibrium maintenance of species diversity. — Ecology60, 1225–1239.Google Scholar
  120. Southward, A. J., 1958. The zonation of plants and animals on rocky sea shores. — Biol. Rev.33, 137–177.Google Scholar
  121. Southward, A. J., 1964. Limpet grazing and the control of vegetation on rocky shores. In: Grazing in terrestrial and marine environments. Ed. by D. J. Crisp. Blackwell Scientific Publications, Oxford, 265–273.Google Scholar
  122. Southward, A. J. & Southward, E. C., 1978. Recolonization of rocky shores in Cornwall after use of toxic dispersants to clean up the Torrey Canyon spill. — J. Fish. Res. Bd Can.35, 682–706.Google Scholar
  123. Stebbing, A. R. D., 1973. Competition for space between the epiphytes ofFucus serratus L. — J. mar. biol. Ass. U.K.53, 247–261.Google Scholar
  124. Stephenson, T. A. & Stephenson, A., 1949. The universal features of zonation between tidemarks on rocky coasts. — J. Ecol.37, 289–305.Google Scholar
  125. Stephenson, T. A. & Stephenson, A., 1972. Life between tidemarks on rocky shores. Freeman, San Francisco, 425 pp.Google Scholar
  126. Steneck, R. S., 1982. A limpet coralline alga association: adaptations and defences between a selective herbivore and its prey. — Ecology63, 507–522.Google Scholar
  127. Suchanek, T. H., 1985. Mussels and their role in structuring rocky shore communities. In: The ecology of rocky coasts. Ed. by P. G. Moore & R. Seed. Hodder & Stoughton, London, 70–96.Google Scholar
  128. Sundene, O., 1973. Growth and reproduction inAscophyllum nodosum (Phaeophyceae). — Norw. J. Bot.20, 249–255.Google Scholar
  129. Sutherland, J. P. & Karlson, R. H., 1977. Development and stability of the fouling community at Beaufort, North Carolina. — Ecol. Monogr.47, 425–466.Google Scholar
  130. Underwood, A. J., 1972. Tide model analysis of the zonation of intertidal prosobranchs. Four species ofLittorina (L.). — J. exp. mar. Biol. Ecol.9, 239–255.Google Scholar
  131. Underwood, A. J., 1979. The ecology of intertidal gastropods. — Adv. mar. Biol.16, 111–210.Google Scholar
  132. Underwood, A. J., 1980. The effects of grazing by gastropods and physical factors on the upper limits of distribution of intertidal macroalgae. — Oecologia46, 201–213.CrossRefGoogle Scholar
  133. Underwood, A. J., 1984a. Vertical and seasonal patterns in competition between intertidal gastropods. — Oecologia64, 211–222.CrossRefGoogle Scholar
  134. Underwood, A. J., 1984b. Microalgal food and the growth of the intertidal gastropodsNerita atramentosa Reeve andBembicium nanum (Lamarck) at four heights of the shore. — J. exp. mar. Biol. Ecol.79, 277–291.CrossRefGoogle Scholar
  135. Underwood, A. J., 1985. Practical factors and biological interactions: the necessity and nature of ecological experiments. In: The ecology of rocky coasts. Ed. by P. G. Moore & R. Seed Hodder & Stoughton, London, 372–389.Google Scholar
  136. Underwood, A. J. & Denley, E. J., 1984. Paradigms, explanations and generalizations in models for the structure of intertidal communities on rocky shores. In: Ecological communities: conceptual issues and the evidence. Ed. by D. Strong, D. Simberloff, L. G. Abele & A. B. Thistle. Princeton Univ. Press, Princeton/N.J., 151–180.Google Scholar
  137. Underwood, A. J. & Fairweather, P. G., 1986. Intertidal communities: do they have different ecologies or different ecologists? — Proc. ecol. Soc. Aust.14, 7–16.Google Scholar
  138. Underwood, A. J. & Jernakoff, 1981. Effects of interaction between algae and grazing gastropods on the structure of a low shore intertidal algal community. — Oecologia48, 221–233.CrossRefGoogle Scholar
  139. Vauk, G. & Prüter, J., 1987. Möwen. Niederelbe-Verl, Otterndorf, 303 pp.Google Scholar
  140. Weinberg, S., 1978. The minimal area problem in invertebrate communities of Mediterranean rocky substrata. — Mar. Biol.49, 33–40.Google Scholar
  141. West, L., 1986. Interindividual variation in prey selection by the snailNucella (=Thais) emarginata. —Ecology67, 798–809.Google Scholar
  142. Wurster, P., 1962. Geologisches Portrait Helgolands. — Die Natur70, 135–150.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1990

Authors and Affiliations

  • Klaus Janke
    • 1
    • 2
  1. 1.Biologische Anstalt Helgoland (Meeresstation)HelgolandFRG
  2. 2.Abt. Marine Ökologie u. SystematikZoologisches Institut der Universität KielKiel 1FRG

Personalised recommendations