Helgoländer Meeresuntersuchungen

, Volume 44, Issue 2, pp 125–134 | Cite as

Heat production inLittorina saxatilis Olivi andLittorina neritoides L. (gastropoda: Prosobranchia) during an experimental exposure to air

  • Inge Kronberg


The adaptation of littorinid molluscs to prolonged aerial exposure was investigated by the determination of heat production.Littorina saxatilis, inhabiting the upper eulittoral, reached a maximum metabolic activity during submersion (heat production: 3.26×10−3J s−1 (gadw)−1. On the first three days of desiccation, the heat production was continuously reduced to 40% of the submersed value. A prolonged aerial exposure was lethal for this species. In the supralittoralL. neritoides, three stages of energy metabolism could be observed: An intermediate heat production during submersion (1.97×10−3Js−1 (gadw)−1), an increased metabolism during the first hour of aerial exposure (heat production 204% of submersed value), and a minimal metabolism (39% of the submersed value and 19% of maximum value) during the following days and weeks of desiccation. Recovery depended on water salinity;L. saxatilis proved to be less euryhaline thanL. neritoides. Thus, the metabolic adaptations correlate with the level of littoral habitat; inactivity combined with a drastically reduced energy consumption is a metabolically economic way to survive in periodically dry environments.


Waste Water Energy Consumption Water Management Water Pollution Metabolic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Behrens, S., 1972. The role of wave impact and desiccation in the distribution ofLittorina sitkana (Philippi). Veliger15, 129–132.Google Scholar
  2. Bengtsson, W., 1982. Aktivität des Elektronen-Transport-Systems (ETS) und Wärmeproduktion mariner Sedimente. Diss., Univ. Kiel, 116 pp.Google Scholar
  3. Berger, V. Y., 1975. The changes of euryhalinity in ontogenesis and adaptations connected with reproduction of the White Sea molluscLittorina saxatilis. —Biol. Morja, Vladiv.1, 43–50.Google Scholar
  4. Berger, V. Y., 1978. A study of salinity adaptations of the molluskLittorina sitchana with relation to ideas on the evolution of the genusLittorina. —Zool. Zh.57, 1786–1789.Google Scholar
  5. Berger, V. Y. & Kuz'min, A. N., 1978. Effect of low salinity on the development of some White Sea mollusks. —Zool. Zh.57, 1632–1636.Google Scholar
  6. Berry, A. J., 1961. Some factors affecting the distribution ofLittorina saxatilis (Olivi) —J. Anim. Ecol.30, 27–45.Google Scholar
  7. Broekhuysen, G. J., 1940. A preliminary investigation of the importance of desiccation, temperature and salinity as factors controlling the vertical distribution of certain intertidal marine gastropods in False Bay, South Africa. —Trans. R. Soc. S. Afr.28, 255–292.Google Scholar
  8. Clyne, P. M. & Duffus, J. H., 1979. A preliminary study of variation in reproduction ofLittorina rudis. —J. moll. Stud.45, 178–185.Google Scholar
  9. Daguzan, J., 1975. Recherches sur les Littorinidae. Thèse, Univ. Rennes, 189 pp.Google Scholar
  10. Fraenkel, G., 1961. Resistance to high temperatures in a Mediterranean snail,L. neritoides. —Ecology42, 604–606.Google Scholar
  11. Fretter, V., 1980. Gross anatomy of the female genital duct of British U.K.Littorina spp. —J. moll. Stud.46, 148–153.Google Scholar
  12. Fretter, V. & Manly, R., 1977. The settlement and early benthic life ofLittorina neritoides (L.) at Wembury, S. Devon (England). —J. moll. Stud.43, 255–262.Google Scholar
  13. Hammen, C. S., 1976. Respiratory adaptations: Invertebrates In: Estuarine processes. Ed. by M. Wiley, Acad. Press, New York,1, 347–355.Google Scholar
  14. Hammen, C. S., 1979. Metabolic rates of marine bivalve molluscs determined by calorimetry. —Comp. Biochem. Physiol.62(A), 955–969.CrossRefGoogle Scholar
  15. Heller, J., 1975. The taxonomy of some BritishLittorina species' with notes on their reproduction (Mollusca: Prosobranchia). —Zool. J. Linn. Soc.56, 131–151.Google Scholar
  16. Hughes, R. N. & Roberts, D. J., 1980. Reproductive effort of winkles (Littorina spp.) with contrasted methods of reproduction. —Oecologia47, 130–136.CrossRefGoogle Scholar
  17. Kronberg, I., 1983. Ökologie der Schwarzen Zone im marinen Felslitoral: Monographie eines extremen Lebensraumes. Diss., Univ. Kiel, 237 pp.Google Scholar
  18. Kronberg, I., 1988. Structure and adaptation of the fauna in the black zone (littoral fringe) along rocky shores in northern Europe. —Mar. Ecol. Prog. Ser.49, 95–106.Google Scholar
  19. Mayes, P. A., 1962. Comparative investigations of the euryhaline character ofLittorina and the possible relationship to intertidal zonation. —Nature, Lond.195, 1269–1270.Google Scholar
  20. McManus, D. P. & James, B. L., 1975. Anaerobic glucose metabolism in the digestive gland ofLittorina saxatilis rudis (Maton) and in the daughter sporocysts ofMicrophallus similis (Jäg) (Digenea: Microphallidae). —Comp. Biochem. Physiol.51 (B), 293–297.Google Scholar
  21. Newell, R. C., 1973. Factors affecting the respiration of intertidal invertebrates. —Am. Zool.13, 513–528.Google Scholar
  22. Newell, R. C., 1979. Biology of intertidal animals. Marine ecological surveys LTD., Faversham, Kent, 781 pp.Google Scholar
  23. Pamatmat, M. M., 1978. Oxygen uptake and heat production in a metabolic conformer (Littorina irrorata) and a metabolic regulator (Uca pugnax). —Mar. Biol.48, 317–325.CrossRefGoogle Scholar
  24. Patanè, L., 1946. Anaerobiosi inLittorina neritoides, (L.). —Boll. Soc. ital. Biol. sper.21, 928–929.Google Scholar
  25. Patanè, L., 1955. Cinesi i tropismi, anidro- e anaerobiosi inLittorina neritoides (L.). —Boll. Sed. Accad. gioenia Sci. nat.3, 65–73.Google Scholar
  26. Pettitt, C. W., 1974. An indexed bibliography of the family Littorinidae (Gastropoda, Mollusca) 1758–1973. Manchester Museum, The Univ. Manchester, 36 pp.Google Scholar
  27. Remmert, H., 1968. DieLittorina-Arten: Kein Modell für die Entstehung der Landschnecken? —Oecologia2, 47–54.CrossRefGoogle Scholar
  28. Sandison, E. E., 1966. The oxygen consumption of some intertidal gastropods in relation to zonation. —J. Zool., Lond.149, 163–173.Google Scholar
  29. Schmitt, R. J., 1979. Mechanics and timing of egg capsule release by the littoral fringe periwinkleLittorina planaxis (Gastropoda: Prosobranchia), —Mar. Biol.50, 359–366.CrossRefGoogle Scholar
  30. Shick, M., 1981. Heat production and oxygen uptake in intertidal sea anemones from different shore heights during exposure to air. —Mar. Biol Lett.2, 225–236.Google Scholar
  31. Shick, J. M., Gnaiger, E., Widdows, J., Bayne, B. L. & Zwaan, A. de, 1986. Activity and metabolism in the musselMytilus edulis L. during intertidal hypoxia and aerobic recovery. —Physiol Zool.59, 627–642.Google Scholar
  32. Shick, J. M., Widdows, J. & Gnaiger E., 1988. Calorimetric studies of behavior, metabolism and energetics of sessile intertidal animals. —Am. Zool.28, 161–181.Google Scholar
  33. Todd, M. E., 1964. Osmotic balance inLittorina littorea, L. littoralis andL. saxatilis. —Physiol. Zool.37, 33–34.Google Scholar
  34. Vermeij, G. J., 1973. Morphological patterns in high intertidal gastropods: Adaptive strategies and their limitations. —Mar. Biol.20, 319–346.CrossRefGoogle Scholar
  35. Widdows, J. & Shick, J. M., 1985. Physiological responses ofMytilus edulis andCardium edule to aerial exposure. —Mar. Biol.85, 217–232.CrossRefGoogle Scholar
  36. Wieser, W., 1980. Metabolic end products in 3 species of marine gastropods. —J. mar. biol. Ass. U.K.60, 175–180.Google Scholar
  37. Zwaan, A. de, 1977, Anaerobic energy metabolism in bivalve molluscs. —Oceanogr. mar. Biol.15, 102–187.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1990

Authors and Affiliations

  • Inge Kronberg
    • 1
  1. 1.Abt. Marine Ökologie und SystematikZoologisches Institut der Christian-Albrechts-UniversitätKielFederal Republic of Germany

Personalised recommendations