Journal of Mathematical Sciences

, Volume 88, Issue 2, pp 202–207 | Cite as

Yang-baxterization of the quantum dilogarithm

  • A. Yu. Volkov
  • L. D. Faddeev


A new solution of the Yang-Baxter equation with spectral parameter is found. The resulting R-matrix R(x) is an operator inHH, whereH=L2(ℝ). This R-matrix is required to justify the solution of the sine-Gordon model on the discrete space-time. Bibliography: 18 titles.


Spectral Parameter Quantum Dilogarithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. O. Tarasov, L. A. Takhtajan, and L. D. Faddeev,Teor. Mat. Fiz.,57, 163 (1983).MathSciNetGoogle Scholar
  2. 2.
    L. D. Faddeev, “Algebraic aspects of Bethe-ansatz,” Lectures delivered at ITP, Stony Brook, April 1994, Preprint ITP-SB-94-11, HEP-TH 9404013.Google Scholar
  3. 3.
    J. L. Gervais,Phys. Lett.,B160, 279 (1985).MathSciNetGoogle Scholar
  4. 4.
    A. Yu. Volkov,Zap. Nauchn. Semin. LOMI,161, 24 (1987).zbMATHGoogle Scholar
  5. 5.
    V. E. Korepin and V. O. Tarasov, private communication (1989).Google Scholar
  6. 6.
    A. Yu. Volkov,Phys. Lett.,A167, 345 (1992).Google Scholar
  7. 7.
    A. Yu. Volkov and L. D. Faddeev,Teor. Mat. Fiz.,92, 207 (1992).MathSciNetGoogle Scholar
  8. 8.
    V. V. Bazhanov and Yu. G. Strogonov,J. Stat. Phys.,51, 799 (1990).Google Scholar
  9. 9.
    L. D. Faddeev and R. M. Kashaev, Preprint TFT-93-63 Helsinki, HEP TH 9311075.Google Scholar
  10. 10.
    L. D. Faddeev and A. Yu. Volkov,Lett. Math. Phys.,32, 125 (1994).CrossRefMathSciNetGoogle Scholar
  11. 11.
    V. V. Bazhanov and N. Yu. Reshetikhin, private communication, March (1994).Google Scholar
  12. 12.
    V. Fateev and A. B. Zamolodchikov,Phys. Lett.,A92, 37 (1982).MathSciNetGoogle Scholar
  13. 13.
    L. D. Faddeev, “Current-like variables in massive and massless integrable models,” Lectures at E. Fermi Summer school Varenna, 1994; HEP-TH/9406196.Google Scholar
  14. 14.
    L. D. Faddeev and R. M. Kashaev,Mod. Phys. Lett.,A9, 427 (1994).MathSciNetGoogle Scholar
  15. 15.
    G. D. Malyuzhinets,Akust. Zh.,1, 144 (1955).Google Scholar
  16. 16.
    L. D. Faddeev and A. Yu. Volkov,Phys. Lett.,B315, 311 (1993).MathSciNetGoogle Scholar
  17. 17.
    L. D. Faddeev, “Modular group and the Weyl-Heisenberg algebra,” Preprint 1/1995, POMI.Google Scholar
  18. 18.
    V. V. Bazhanov, A. I. Bobenko, and N. Yu. Reshetikhin, “Quantum discrete sine-Gordon model at roots of 1,” UC Berkeley Preprint (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. Yu. Volkov
  • L. D. Faddeev

There are no affiliations available

Personalised recommendations