Advertisement

Journal of Mathematical Sciences

, Volume 77, Issue 3, pp 3137–3145 | Cite as

An involution and dynamics for theq-deformed quantum top

  • A. Yu. Alekseev
  • L. D. Faddeev
Article

Abstract

An involution on the phase space of the q-deformed quantum top is constructed which singles out a q-analog of its compact form, and a dynamics compatible with this involution is proposed which imitates the motion of the classical symmetric top. Bibliography:15 titles.

Keywords

Phase Space Compact Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. Yu. Alekseev and L. D. Faddeev,Commun. Math. Phys.,141, 413–422 (1991).CrossRefMathSciNetGoogle Scholar
  2. 2.
    V. Drinfeld, “Quantum Groups,” Proc. ICM-86, Berkeley, California (1986, 1987), pp. 798–820.Google Scholar
  3. 3.
    S. L. Woronowicz,Commun. Math. Phys.,122, 125 (1989).CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    J. Wess and B. Zumino,Nucl. Phys. B, (Proc. Suppl.)18B, 302–312 (1990).MathSciNetGoogle Scholar
  5. 5.
    Yu. I. Manin, “Quantum groups and non-commutative de Rahm complex,” Bonn preprint MPI/91-47 (1991).Google Scholar
  6. 6.
    B. Zumino,Lecture given at Leipzig (1991).Google Scholar
  7. 7.
    A. Yu. Alekseev, L. D. Faddeev, M. A. Semenov-Tian-Shansky, and A. Volkov, “The unravelling of the quantum group structure in the WZNW theory,” Preprint CERN-TH-5981/91 (1991).Google Scholar
  8. 8.
    A. Yu. Alekseev, L. D. Faddeev, and M. A. Semenov-Tian-Shansky, “Hidden quantum groups inside Kac-Moody algebra,”Commun. Math. Phys.,149, 335 (1992).CrossRefMathSciNetGoogle Scholar
  9. 9.
    L. D. Faddeev, “Quantum symmetry in conformal field theory by Hamiltonian methods,” Lectures given at Cargese, summer 1991.Google Scholar
  10. 10.
    L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtadjan,Leningrad Math. J.,1, 178–206 (1989).Google Scholar
  11. 11.
    N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky,Lett. Math. Phys.,19 (1990).Google Scholar
  12. 12.
    G. Mack and V. Schomerus,Nucl. Phys. B370, 185 (1992).CrossRefMathSciNetGoogle Scholar
  13. 13.
    A. Yu. Alekseev, H. Grosse, and V. Schomerus, “Combinatorial quantization of the Hamiltonian Chern Simons theory,” HUTMP 94-B336,Commun. Math. Phys., to appear.Google Scholar
  14. 14.
    L. D. Faddeev and P. N. Pyatov, “The Differential Calculus on Quantum Linear Groups,” Preprint hep-th/9402070.Google Scholar
  15. 15.
    A. Yu. Alekseev and V. Schomerus, “Representation theory of Chern Simons observables,” in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. Yu. Alekseev
  • L. D. Faddeev

There are no affiliations available

Personalised recommendations