Journal of Mathematical Sciences

, Volume 73, Issue 4, pp 500–517 | Cite as

Essential singularity of the second-genus Painlevé function and the nonlinear stokes phenomenon

  • A. A. Kapaev


By the isomonodromic deformation method, the leading term of the elliptic asymptotics as x→∞ of the solution of the second Painlevé equation is constructed in the generic case. The equations for the modulus of this elliptic sine (which depends only on arg x) are given. The phase of the elliptic sine for any arg x is explicitly expressed in terms of first integrals of the Painlevé equation, i.e., in terms of the Stokes multipliers of the associated linear system. A nonlinear Stokes phenomenon typical for the asymptotic behavior of the Painlevé function is described. Bibliography: 25 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. Painlevé,Bull. Soc. Math. France,28, 201–261 (1900).MATHMathSciNetGoogle Scholar
  2. 2.
    P. Painlevé,Acta Math.,25, 1–86 (1902).Google Scholar
  3. 3.
    B. Gambier,Acta Math.,33, 1–55 (1910).MathSciNetGoogle Scholar
  4. 4.
    V. V. Golubev,Math. Sb.,28, No. 2, 323–349 (1912).MATHMathSciNetGoogle Scholar
  5. 5.
    P. Boutroux,Ann. Sci. Ec. Norm. Sup.,30, 255–376 (1900).MathSciNetGoogle Scholar
  6. 6.
    H. Flaschka and A. C. Newell,Commun. Math. Phys.,76, No. 1, 65–111 (1980).MathSciNetGoogle Scholar
  7. 7.
    M. Jimbo and T. Miwa,Physica D,2, No. 3, 407–448 (1981).MathSciNetGoogle Scholar
  8. 8.
    R. Fuchs,Math. Ann.,63, 301–321 (1907).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    L. Schlesinger,J. Rein. Angew. Math.,141, 96–145 (1912).MATHGoogle Scholar
  10. 10.
    R. Garnier,Ann. Sci. Ec. Norm. Sup.,29, 1–126 (1912).MATHMathSciNetGoogle Scholar
  11. 11.
    A. R. It-s,Izv. Akad. Nauk SSSR, Ser. Mat.,49, No. 3, 530–565 (1985).MathSciNetGoogle Scholar
  12. 12.
    V. Yu. Novokshenov,Funkts. Anal. Prilozh.,19, No. 3, 90–91 (1984).MathSciNetGoogle Scholar
  13. 13.
    A. R. It-s (Its) and V. Yu. Novokshenov,Lecture Notes in Math.,1181, 1–313 (1986). A. S. Fokas and M. J. Ablowitz,Commun. Math. Phys.,91, 381 (1983).Google Scholar
  14. 15.
    A. S. Fokas, U. Mugan, and M. J. Ablowitz,M. J. Phys. D,30, 247–283 (1988).MathSciNetGoogle Scholar
  15. 16.
    A. R. It-s and A. A. Kapaev,Izv. Akad. Nauk SSSR, Ser. Mat.,51, No. 4, 873–892 (1987).Google Scholar
  16. 17.
    V. Yu. Novokshenov,Dokl. Akad. Nauk SSSR,283, No. 5, 1161–1165 (1985).MATHMathSciNetGoogle Scholar
  17. 18.
    A. V. Kitaev,Teor. Math. Fiz.,64, No. 3, 347–369 (1985).MATHMathSciNetGoogle Scholar
  18. 19.
    B. M. McCoy and Sh. Tang,Physica D,19, 42–72 (1986);20, 187–216 (1986).CrossRefMathSciNetGoogle Scholar
  19. 20.
    A. V. Kitaev,Math. Sb.,134, No. 11, 421–444 (1987).MATHGoogle Scholar
  20. 21.
    A. A. Kapaev,Teor. Math. Fiz.,77, No. 3, 323–332 (1988).MATHMathSciNetGoogle Scholar
  21. 22.
    A. A. Kapaev, (Self-review of the Candidate Thesis), LGU, Leningrad (1987).Google Scholar
  22. 23.
    M. V. Fedoryuk,Asymptotic Methods for Ordinary Differential Equations [in Russian], Moscow (1983).Google Scholar
  23. 24.
    H. Bateman and A. Erdelyi,Higher Transcendental Functions, Mc Graw-Hill, New York-Toronto-London (1953).Google Scholar
  24. 25.
    V. Yu. Novokshenov,Dokl. Akad. Nauk SSSR,311, No. 2, 288–291 (1990).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. A. Kapaev

There are no affiliations available

Personalised recommendations