Advertisement

Annals of Biomedical Engineering

, Volume 9, Issue 2, pp 165–175 | Cite as

Theoretical analysis of arterial hemodynamics including the influence of bifurcations

Part II: Critical evaluation of theoretical model and comparison with noninvasive measurements of flow patterns in normal and pathological cases
  • J. C. Stettler
  • P. Niederer
  • M. Anliker
  • M. Casty
Article

Abstract

The mathematical model of pulses propagating in an arterial conduit with discrete branches described in Part I is applied to an arterial pathway extending from the heart to the foot of a human adult. The pressure curves and flow patterns computed for a standard case are compared with data given in the literature and with noninvasive flow measurements. In particular, the abdominal aorta, the A. femoralis, the A. poplitea and the carotid branch are examined. The computed and measured flow patterns are found to be in good agreement. The results of a sensitivity analysis of the model reveal that the diameter variation of the conduit with distance from the heart exhibits the most predominant influence on the pulse shapes. The simulation of various stenoses as they may occur in the A. femoralis and A. iliaca including the influence of an eventual system of collateral vessels yields flow patterns which are confirmed by corresponding noninvasive measurements. By verifying the mass and energy balance at any instance of time the numerical accuracy of the computations is assessed. Moreover, the validity of the lumped parameter outflow model in troduced in Part I is established by applying the method of characteristics also to the side branches.

Keywords

Flow Pattern Abdominal Aorta Pulse Shape Side Branch Pressure Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holenstein, R., P. Niederer, and M. Anliker, A viscoelastic model for use in predicting arterial pulse waves.ASME J. Biomech. Eng. 102:318–319, 1980.Google Scholar
  2. 2.
    Wetterer, E. Bau und Funktion des Gefässsystems. InPhysiologie, edited by W.D. Kreidel. Stuttgart: Thieme, 1975, pp. 100–139.Google Scholar

Copyright information

© Pergamon Press Ltd. 1981

Authors and Affiliations

  • J. C. Stettler
    • 1
    • 2
  • P. Niederer
    • 1
    • 2
  • M. Anliker
    • 1
    • 2
  • M. Casty
    • 1
    • 2
  1. 1.Institute of Biomedical EngineeringUniversity of ZurichZurichSwitzerland
  2. 2.Swiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations