Advertisement

Annals of Biomedical Engineering

, Volume 8, Issue 4–6, pp 293–303 | Cite as

Closed-loop control in prosthetic systems: Historical perspective

  • Dudley S. Childress
Sensory Neural Prostheses

Abstract

The control of artificial limbs and other restorative systems is discussed in terms of closed-loop control and sensory feedback. Feedback modalities are classified in three categories:
  1. (1)

    Supplemental Sensory Feedback

     
  2. (2)

    Artificial Reflexes

     
  3. (3)

    Control Interface Feedback.

     

Historical attempts to provide sensory feedback in prostheses are discussed and put in the context of more modern efforts in this area.

Keywords

Historical Perspective Sensory Feedback Supplemental Sensory Restorative System Control Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach-y-Rita, P., C. C. Collins, F. Saunders, B. White, and L. Scadden. Vision substitution by tactile image projection.Nature 221: 963–964, 1969.PubMedGoogle Scholar
  2. 2.
    Battye, C. K., A. Nightingale, and J. Willis. The use of myoelectric currents in the operation of prostheses.J. Bone Jt. Surg. 37-B: 506–510, 1955.Google Scholar
  3. 3.
    Beeker, T. W., J. During, and A. Den Hertog. Artificial touch in a hand prosthesis. 5: 47–49, 1967.Google Scholar
  4. 4.
    Bell, Sir Charles. The hand, its mechanism and vital endowments as evincing design.Bridgewater Treatise IV, 1832.Google Scholar
  5. 5.
    Bottomley, A. H. Myoelectric control of powered prostheses.J. Bone Jt. Surg. 47B, No. 3: 411–415, 1965.Google Scholar
  6. 6.
    Clippinger, F. W., R. Avery, B. Titus. A sensory feedback system for an upper limb amputation prosthesis.Bull. Prosthet. Res. 10–22: 247–258, 1974.Google Scholar
  7. 7.
    Collins, C. C. and J. Madey. Tactile sensory replacement. Proceedings of the San Diego Biomedical Symposium 13: 15–26, 1974.Google Scholar
  8. 8.
    Conzelman, J. E., H. B. Ellis, and C. W. O'Brien. U.S. Patent 2,65,,545, Prosthetic Device Sensory Attachment, Oct. 27, 1953.Google Scholar
  9. 9.
    Doubler, J. A. Sensory feedback for a myoelectric hand prosthesis. M.S. thesis, electrical engineering, Northwestern University, 1976.Google Scholar
  10. 10.
    Geldard, F. A. Cutaneous channels of communication. In:Sensory Communication, edited by W. Rosenblith. New York: Wiley and Sons, 1961, pp. 73–87.Google Scholar
  11. 11.
    Goldman I. A. U.S. Patent 2,567,066, Robot Controlled Limb, Sept. 4, 1951.Google Scholar
  12. 12.
    Herberts, P., and L. Körner. Ideas on sensory feedback in hand prostheses.Prosthet. Orthot. Int. 3: 157–162, 1979.PubMedGoogle Scholar
  13. 13.
    Hill, J. W. Touch feedback and automatic control, Proc 4th Int. Symp. on Control of Human Extremities, ETAN, Yugoslavia, Dubrovnik, 1972, pp. 223–242.Google Scholar
  14. 14.
    Jacobsen, S. C., R. B. Jerard, and D. Knutti. Development and Control of the Utah Arm. Proc. 5th Int. Symp. on Control of Human Extremities, ETAN, Yugoslavia, Dubrovnik, 1975, pp 405–414.Google Scholar
  15. 15.
    Kato, I., S. Yamakawa, K. Ichikawa, and M. Sano. Multifunctional myoelectric hand prosthesis with pressure sensory feedback system: Waseda hand 4P. roc. 3rd Int. Symp. on External Control of Human Extremities, ETAN, Yugoslavia, Dubrovnik, 1975, pp. 155–170.Google Scholar
  16. 16.
    Kawamura, Z. and O. Sueda. Sensory feedback device for the artificial arm. Paper presented at the Fourth Pan Pacific Rehabilitation Conference, Osaka, Japan, 1969.Google Scholar
  17. 17.
    Klasson, B. Three-way valves for biomechanical, proportional three-state control. In:The Control of Upper-Extremity Prostheses and Orthoses, edited by P. Herberts, R. Kadefors, R. Magnusson, and, I. Petersen. Springfield, Ill.: Thomas, 1974, pp. 107–117.Google Scholar
  18. 18.
    Klopsteg, P. E., and P. D. Wilson, editors.Human Limbs and Their Substitutes. New York: MeGraw-Hill, 1954, pp. 48–77.Google Scholar
  19. 19.
    Kobrinski, A. Y. Bioelectric control of prosthetic devices.Herald of the Academy of Science-USSR (Vestn. Akad. Nauk SSSR) 30: 58–61, 1960.Google Scholar
  20. 20.
    Lambert, T. H., and M. J. Hall. Design and control of powered artificial arms. In:Basic Problems of Prehension, Movement and Control of Artificial Limbs. Proc. Inst. Mech. Eng., Part 3J. 183: 1–5, 1969.Google Scholar
  21. 21.
    Lucaccini, L. F., P. K. Kaiser, and J. Lyman. The French electric hand: Some observations and conclusions.Bull. Prosthet. Res. 1966, pp. 30–51.Google Scholar
  22. 22.
    Mann, R. W. Prostheses control and feedback via noninvasive skin and invasive peripheral nerve techniques. In:Neural Organization and Its Relevance to Prosthetics, edited by W. S. Fields. New York and London: Intercontinental Medical Books Corp., 1973, pp. 177–195.Google Scholar
  23. 23.
    Mann, R. W. Force and position proprioception for prostheses. In:The Control of Upper-Extremity Prostheses and Orthoses, edited by P. Herberts, R. Kadefors, R. Magnusson, and I. Petersen. Springfield, Ill: Thomas, 1974, pp. 201–219.Google Scholar
  24. 24.
    Martin, F.Artificial Limbs. Geneva: International Labour Office, Studies and Reports, Series E, No. 5, 1925.Google Scholar
  25. 25.
    Pfeiffer, E. A., C. M. Rhode, and S. I. Fabric. An experimental device to provide substitute tactile sensation from the anesthetic hand.Med. Eng. 7: 191–199, 1969.Google Scholar
  26. 26.
    Prior, R. E., P. A. Case, C. M. Scott, and J. Lyman. Supplemental sensory feedback for the VA/NA myoelectric hand: Background and feasibility.Bull. Prosthet. Res. 10–26: 170–190, 1976.Google Scholar
  27. 27.
    Prior, R. E. and J. Lyman. Electrocutaneous feedback for artificial limbs.Bull. Prosthet. Res. 10–24: 3–37, 1975.PubMedGoogle Scholar
  28. 28.
    Rakić, M. The Belgrade hand prosthesis. In:Basic Problems of Prehension, Movement and Control of Artificial Limbs. Proc. Instn. Mech. Engrs Part 3J, 183, 1969, pp. 60–67.Google Scholar
  29. 29.
    Reiter, R. Eine neue electrokunsthand.Grenzgeb. Med. 4: 133–135, 1948.Google Scholar
  30. 30.
    Reswick, J., V. Mooney, A. Schwartz, D. McNeal, N. Su, G. Bekey, B. Bowman, R. Snelson, G. Irons, P. Schmid, and C. Sperry. Sensory feedback prosthesis using intraneural electrodes. Proc. 5th Int. Symp. on External Control of Human Extremities. ETAN, Yugoslavia, Dubrovnil, 1975, pp. 9–24.Google Scholar
  31. 31.
    Ring, N. D., and D. B. Welbourn. A self-adaptive gripping device: Its design and performance. In:Basic Problems of Prehension, Movement and Control of Artificial Limbs, Proc. Inst. Mech. Eng. Part 3J. 183: 45–49, 1969.Google Scholar
  32. 32.
    Rohland, T. A. and E. C. Davey. Sensory feedback systems for myoelectrically controlled hand prostheses. Proc. of the 1974 Conf. on Engineering Devices in Rehabilitation. Boston, 1974, pp. 65–68.Google Scholar
  33. 33.
    Rosset, F. German Patent 301108, Artificial Limbs, Dec. 17, 1916.Google Scholar
  34. 34.
    Salisbury, L. L., and A. B. Colman. A mechanical hand with automatic proportional control of prehension.Med. Biol. Eng. 5: 501–511, 1967.Google Scholar
  35. 35.
    Scadden, L. A. A. tactual substitute for sight.New Sci, March 1969, pp. 677–678.Google Scholar
  36. 36.
    Schlesinger, G. Der Mechanische Aufbau der Kunstlichen Glider, pt. 2. In:Ersatzglieder und Arbeitshilfen. Berlin: Springer, 1919.Google Scholar
  37. 37.
    Scott, R. N., R. H. Brittain, R. R. Caldwell, A. B. Cameron, and V. A. Dunfield. Sensory-feedback system compatible with myoelectric control.Med. Biol. Eng. Comput. 18: 65–69, 1980.PubMedGoogle Scholar
  38. 38.
    Shannon, G. F., A myoelectrically-controlled prosthesis with sensory feedback.Med. Biol. Eng. Comput. 17: 73–80, 1979.PubMedGoogle Scholar
  39. 39.
    Sheridan, T. B. and W. R. Ferrell.Man-Machine Systems: Information, Control, and Decision Models of Human Performance. Cambridge: MIT Press, 1974.Google Scholar
  40. 40.
    Simpson, D. C. The choice of control system for the multimovement prosthesis: Extended physiological proprioception (epp). In:The Control of Upper-Extremity Prostheses and Orthoses, edited by P. Herberts, R. Kadefors, R. Magnusson, and I. Petersen. Springfield, Ill: Thomas, 1974, pp. 146–150.Google Scholar
  41. 41.
    Simpson, D. C. The functioning hand, the human advantage.J. of Royal College of Surgeons of Edinburgh, 21: 329–340, 1976.Google Scholar
  42. 42.
    Sorbye, R. Myoelectrically controlled hand prosthesis in children.Int. J. Rehabil. Res. I: 15–25, 1977.Google Scholar
  43. 43.
    Taylor, D. R., and F. R. Finley. Multiple-axis prosthesis control by muscle synergies. In:The Control of Upper-Extremity Prostheses and Orthoses, edited by P. Herberts, R. Kadefors, R. Magnusson, and I. Petersen. Springfield, Ill: Thomas, 1974, pp. 181–189.Google Scholar
  44. 44.
    Von Békésy, G. Sensations on the skin similar to directional hearing, beats, and harmonics of the ear.J. Acoust. Soc. Am. 29, No. 4: 489–501, April 1957.Google Scholar
  45. 45.
    Wiener, N.Cybernetics. Cambridge: MIT Press, 1948.Google Scholar

Copyright information

© Pergamon Press Ltd. 1981

Authors and Affiliations

  • Dudley S. Childress
    • 1
  1. 1.Prosthetics Research LaboratoryNorthwestern UniversityChicago

Personalised recommendations