Annals of Biomedical Engineering

, Volume 11, Issue 3–4, pp 208–261 | Cite as

The discontinuous nature of electrical propagation in cardiac muscle

Consideration of a quantitative model incorporating the membrane ionic properties and structural complexities the ALZA distinguished lecture
  • Madison S. Spach
The 1982 Alza Distinguished Lecture The Discontinuous Nature of Electrical Propagation in Cardiac Muscle


The propagation of excitation in cardiac muscle has generally been treated as though it occurred in a continuous structure. However, new evidence indicates that propagation in cardiac muscle often displays a discontinuous nature. In this paper, we consider the hypothesis that this previously unrecognized type of propagation is caused by recurrent discontinuities of effective axial resistivity which affect the membrane currents. The major implication is that the combination of discontinuities of axial resistivity at several size scales can produce most currently known cardiac conduction disturbances previously thought to require spatial nonuniformities of the membrane properties. At present there is no appropriate model or simulation for propagation in anisotropic cardiac muscle. However, the recent quantitative description of the fast sodium current in voltage-clamped cardiac muscle membrane makes it possible, for the first time, to apply experimentally based quantitative membrane models to propagation in cardiac muscle. The major task now is to account for the functional role of the structural complexities of cardiac muscle. The importance of such a model is that it would establish how the membrane ionic currents and the complexities of cell and tissue structure interact to determine propagation in both normal and abnormal cardiac muscle.


Anisotropy Cell-to-cell coupling Continuous cable theory Discontinuities of axial resistivity Discontinuous propagation Hodgkin-Huxley equations Numerical analysis Propagation models Propagation of depolarization Safety factor of propagation Velocity,Vmax 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azarnia, R. and W.R. Loewenstein. Intercellular communication and tissue growth: VIII. A genetic analysis of junctional communication and cancerous growth.J. Membr. Biol. 34:1–28, 1977.PubMedGoogle Scholar
  2. 2.
    Barr, L., M.M. Dewey, and W. Berger. Propagation of action potentials and the structure of the nexus in cardiac muscle.J. Gen. Physiol. 48:797–823, 1965.CrossRefPubMedGoogle Scholar
  3. 3.
    Beeler, G.W. and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibres.J. Physiol. (Lond.) 268:177–210, 1977.Google Scholar
  4. 4.
    Brown, A.M., K.S. Lee, and T. Powell. Sodium current in single rat heart muscle cells.J. Physiol. (Lond.) 318:479–500, 1981.Google Scholar
  5. 5.
    Carafoli, E., R. Tiozzo, G. Lugli, F. Crovetti, and C. Kratzing. The release of calcium from heart mitochondria by sodium.J. Mol. Cell. Cardiol. 6:361–371, 1974.CrossRefPubMedGoogle Scholar
  6. 6.
    Chapman, R.A. and C.H. Fry. An analysis of the cable properties of frog ventricular myocardium.J. Physiol. (Lond.) 283:263–282, 1978.Google Scholar
  7. 7.
    Chapman, J.B., J.M. Kootsey, and E.A. Johnson. A kinetic model for determining the consequences of electrogenic active transport in cardiac muscle.J. Theor. Biol. 80:405–424, 1979.PubMedGoogle Scholar
  8. 8.
    Clark, J. and R. Plonsey. A mathematical evaluation of the core conductor model.Biophys. J. 6:95–112, 1966.PubMedGoogle Scholar
  9. 9.
    Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart.J. Physiol. (Lond.) 255:335–346, 1976.Google Scholar
  10. 10.
    Colatsky, T.J. Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres.J. Physiol. (Lond.) 305:215–234, 1980.Google Scholar
  11. 11.
    Cole, K.S. Dynamic electrical characteristics of the squid axon membrane.Arch. Sci. Physiol. 3:253–258, 1949.Google Scholar
  12. 12.
    Cole, K.S. Ions, potentials, and the nerve impulse. In:Electrochemistry in Biology and Medicine, edited by T. Shedlovsky. New York: John Wiley & Sons, 1955, pp. 121–140.Google Scholar
  13. 13.
    Cole, K.S.Membranes, Ions and Impulses. Berkeley, Cal.: University of California Press, 1968, pp. 1–59.Google Scholar
  14. 14.
    Cole, K.S., H.A. Antosiewicz, and P. Rabinowitz. Automatic computation of nerve excitation.J. Soc. Indust. Appl. Math. 3:153–172, 1955.CrossRefGoogle Scholar
  15. 15.
    Conn, H.L. and J.C. Wood. Sodium exchange and distribution in the isolated heart of the normal dog.Am. J. Physiol. 197:631–636, 1959.PubMedGoogle Scholar
  16. 16.
    Cooley, J.W. and F.A. Dodge, Jr. Digital computer solutions for excitation and propagation of the nerve impulse.Biophys. J. 6:583–599, 1966.PubMedGoogle Scholar
  17. 17.
    Coraboeuf, E. Voltage clamp studies of the slow inward current. InThe Slow Inward Current and Cardiac Arrhythmias, edited by D.P. Zipes, J.C. Bailey, and V. Elharrar. The Hague: Martinus Nijhoff, 1980, pp. 25–95.Google Scholar
  18. 18.
    Cranefield, P.F.The Conduction of the Cardiac Impulse. The Slow Response and Cardiac Arrhythmias. Mt. Kisco, New York: Futura, 1975.Google Scholar
  19. 19.
    Cranefield, P.F. and F.A. Dodge. Slow conduction in the heart. InThe Slow Inward Current and Cardiac Arrhythmias, edited by D.P. Zipes, J.C. Bailey, and V. Elharrar. The Hague: Martinus Nijhoff, 1980, pp. 149–171.Google Scholar
  20. 20.
    Crank, J. and P. Nicolson. Practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type.Proc. Cambridge Philos. Soc. 43:50–67, 1947.Google Scholar
  21. 21.
    De La Fuente, D., B. Sasyniuk, and G.K. Moe. Conduction through a narrow isthmus in isolated canine atrial tissue: A model of the WPW syndrome.Circulation 44:803–809, 1971.PubMedGoogle Scholar
  22. 22.
    Délèze, J. and W.R. Loewenstein. Permeability of a cell junction during intracellular injection of divalent cations.J. Membr. Biol. 28:71–86, 1976.PubMedGoogle Scholar
  23. 23.
    De Mello, W.C. Intercellular communication in cardiac muscle.Circ. Res. 51:1–9, 1982.PubMedGoogle Scholar
  24. 24.
    Diaz, P.J., Y. Rudy, and R. Plonsey. The effects of the intercalated disc on the propagation of electrical activity in cardiac muscle. Abstract.Fed. Proc. Fed. Am. Soc. Exp. Biol. 40:393, 1981.Google Scholar
  25. 25.
    Draper, M.H. and M. Mya-Tu. A comparison of the conduction velocity in cardiac tissues of various mammals.Q. J. Exp. Physiol. 44:91–109, 1959.Google Scholar
  26. 26.
    Draper, M.H. and S. Weidmann. Cardiac resting and action potentials recorded with an intracellular electrode.J. Physiol. (Lond.) 115:74–94, 1951.Google Scholar
  27. 27.
    Drouhard, J-P and F.A. Roberge. The simulation of repolarization events of the cardiac Purkinje fiber action potential.IEEE Trans. Biomed. Eng. 29:481–493, 1982.PubMedGoogle Scholar
  28. 28.
    Drouhard, J-P and F.A. Roberge. A simulation study of the ventricular myocardial action potential.IEEE Trans. Biomed. Eng. 29:494–502, 1982.PubMedGoogle Scholar
  29. 29.
    Ebihara, L. and E.A. Johnson. Fast sodium current in cardiac muscle. A quantitative description.Biophys. J. 32:779–790, 1980.PubMedGoogle Scholar
  30. 30.
    Ebihara, L., N. Shigeto, M. Lieberman, and E.A. Johnson. The initial inward current in spherical clusters of chick embryonic heart cells.J. Gen. Physiol. 75:437–456, 1980.CrossRefPubMedGoogle Scholar
  31. 31.
    Eisenberg, R.S., V. Barcilon, and R.T. Mathias. Electrical properties of spherical syncytia.Biophys. J. 25:151–180, 1979.PubMedGoogle Scholar
  32. 32.
    Eisenberg, R.S. and R.T. Mathias. Structural analysis of electrical properties of cells and tissues.CRC Crit. Rev. Bioeng. 4:203–232, 1980.Google Scholar
  33. 33.
    Ellis, D. The effects of external cations and ouabain on the intracellular sodium activity of sheep heart Purkinje fibres.J. Physiol. (Lond.) 273:211–240, 1977.Google Scholar
  34. 34.
    Engelmann, T.W. Ueber die Leitung der Erregung im Herzmuskel.Pfluegers Arch. Gesamte Physiol. Menschen Tiere 11:465–480, 1875.Google Scholar
  35. 35.
    FitzHugh, R. Thresholds and plateaus in the Hodgkin-Huxley nerve equations.J. Gen. Physiol. 43:867–896, 1960.CrossRefPubMedGoogle Scholar
  36. 36.
    FitzHugh, R. Mathematical models of excitation and propagation in nerve. InBiological Engineering, edited by H.P. Schwan. New York: McGraw-Hill, 1969, vol. 9, pp. 1–85.Google Scholar
  37. 37.
    FitzHugh, R. and H.A. Antosiewicz. Automatic computation of nerve excitation — detailed corrections and additions.J. Soc. Indust. Appl. Math. 7:447–458, 1959.CrossRefGoogle Scholar
  38. 38.
    Fozzard, H.A. Membrane capacity of the cardiac Purkinje fibre.J. Physiol. (Lond.) 182:255–267, 1966.Google Scholar
  39. 39.
    Fozzard, H. and S-S Sheu. Influence of stimulation rate on intracellular Na activity in cardiac Purkinje fibers. Abstract.Fed. Proc. Fed. Am. Soc. Exp. Biol. 40:392, 1981.Google Scholar
  40. 40.
    Freygang, W.H. and W. Trautwein. The structural implictions of the linear electrical properties of cardiac Purkinje strands.J. Gen. Physiol. 55:524–547, 1970.CrossRefPubMedGoogle Scholar
  41. 41.
    Gerald, C.F.Applied Numerical Analysis. Reading, Mass.: Addison-Wesley Publishing Co, 1970, pp. 250–288.Google Scholar
  42. 42.
    Glitsch, H.D., H. Reuter, and H. Scholtz. The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles.J. Physiol. (Lond.) 209:25–43, 1970.Google Scholar
  43. 43.
    Goldstein, S.S. and W. Rall. Changes of action potential shape and velocity for changing core conductor geometry.Biophys. J. 14:731–757, 1974.PubMedGoogle Scholar
  44. 44.
    Hayashi, H., S. Yamagishi, and T. Kanno. Conducting pathway dependency of the rate of rise of the cardiac action potential. Abstract.Nippon Seirigaku Zasshi 22:292, 1960.Google Scholar
  45. 45.
    Hellman, D.C. and J.W. Studt. A core-conductor model of the cardiac Purkinje fibre based on structural analysis.J. Physiol. (Lond.) 243:637–660, 1974.Google Scholar
  46. 46.
    Hermann, L. Allgemeine Nervenphysiologie. InHandbuch der Physiologie, edited by L. Hermann. Leipzig: Vogel, 2:1–196, 1879.Google Scholar
  47. 47.
    Hodgkin, A.L. A note on conduction velocity.J. Physiol. (Lond.) 125:221–224, 1954.Google Scholar
  48. 48.
    Hodgkin, A.L. and A.F. Huxley. Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo.J. Physiol. (Lond.) 116:449–472, 1952.Google Scholar
  49. 49.
    Hodgkin, A.L. and A.F. Huxley. The components of membrane conductance in the giant axon ofLoligo.J. Physiol. (Lond.) 116:473–496, 1952.Google Scholar
  50. 50.
    Hodgkin, A.L. and A.F. Huxley. The dual effect of membrane potential on sodium conductance in the giant axon ofLoligo.J. Physiol. (Lond.) 116:497–506, 1952.Google Scholar
  51. 51.
    Hodgkin, A.L. and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (Lond.) 117:500–544, 1952.Google Scholar
  52. 52.
    Hodgkin, A.L., A.F. Huxley, and B. Katz. Ionic currents underlying activity in the giant axon of the squid.Arch. Sci. Physiol. 3:129–150, 1949.Google Scholar
  53. 53.
    Hodgkin, A.L. and B. Katz. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (Lond.) 108:37–77, 1949.Google Scholar
  54. 54.
    Hodgkin, A.L. and W.A.H. Rushton. The electrical constants of a crustacean nerve fibre.Proc. R. Soc. Lond. [Biol.] 133:444–479, 1946.Google Scholar
  55. 55.
    Hoffman, B.F. and P.F. Cranefield.Electrophysiology of the Heart. New York: McGraw-Hill, 1960, pp. 259–260.Google Scholar
  56. 56.
    Hogan, P.M. and L.D. Davis. Evidence for specialized fibers in the canine right atrium.Circ. Res. 23:387–396, 1968.PubMedGoogle Scholar
  57. 57.
    Hondeghem, L.M. Validity of\(\dot V_{max} \) as a measure of the sodium current in cardiac and nervous tissues.Biophys. J. 23:147–152, 1978.PubMedGoogle Scholar
  58. 58.
    Hunter, P.J., P.A. McNaughton, and D. Noble. Analytical models of propagation in excitable cells.Prog. Biophys. Mol. Biol. 30:99–144, 1975.PubMedGoogle Scholar
  59. 59.
    Jack, J.J.B., D. Noble, and R.W. Tsien.Electric Current Flow in Excitable Cells. Oxford: Clarendon Press, 1975, pp. 25–304.Google Scholar
  60. 60.
    James, T.N. and L. Sherf. Specialized tissues and preferential conduction in the atria of the heart.Am. J. Cardiol. 28:414–427, 1971.CrossRefPubMedGoogle Scholar
  61. 61.
    Johnson, E.A., Chapman, J.B., and J.M. Kootsey. Some electrophysiological consequences of electrogenic sodium and potassium transport in cardiac muscle: A theoretical study.J. Theor. Biol. 87:737–756, 1980.CrossRefPubMedGoogle Scholar
  62. 62.
    Johnson, E.A. and M. Lieberman. Heart: excitation and contraction.Annu. Rev. Physiol. 33:479–532, 1971.CrossRefPubMedGoogle Scholar
  63. 63.
    Johnston, M.F. and F. Rámon. Electrotonic coupling in internally perfused crayfish segmented axons.J. Physiol. (Lond.) 317:509–518, 1981.Google Scholar
  64. 64.
    Johnston, M.F. and F. Rámon. Voltage independence of an electrotonic synapse.Biophys. J. 39:115–117, 1982.PubMedGoogle Scholar
  65. 65.
    Joyner, R.W. Effects of the discrete pattern of electrical coupling on propagation through an electrical syncytium.Circ. Res. 50:192–200, 1982.PubMedGoogle Scholar
  66. 66.
    Joyner, R.W., M. Westerfield, J.W. Moore, and N. Stockbridge. A numerical method to model excitable cells.Biophys. J. 22:155–170, 1978.PubMedGoogle Scholar
  67. 67.
    Kanno, T. The heterogeneous structure of the specialized tissue in the heart as a factor in atrioventricular conduction delay.Jpn. J. Physiol. 20:417–434, 1970.PubMedGoogle Scholar
  68. 68.
    Karagueuzian, H.S., J.J. Fenoglio, Jr., M.B. Weiss, and A.L. Wit. Protracted ventricular tachycardia induced by premature stimulation of the canine heart after coronary artery occlusion and reperfusion.Circ. Res. 44:833–846, 1979.PubMedGoogle Scholar
  69. 69.
    Kass, R.S., S.A. Siegelbaum, and R.W. Tsien. Three-microelectrode voltage clamp experiments in calf cardiac Purkinje fibres: Is slow inward current adequately measured?J. Physiol. (Lond.) 290:201–225, 1979.Google Scholar
  70. 70.
    Khodorov, B.I.The Problem of Excitability. Electrical Excitability and Ionic Permeability of the Nerve Membrane. New York: Plenum Press, 1972, pp. 213–255.Google Scholar
  71. 71.
    Khodorov, B.I. Sodium inactivation and drug-induced immobilization of the gating charge in nerve membrane.Prog. Biophys. Mol. Biol. 37:49–89, 1981.PubMedGoogle Scholar
  72. 72.
    Khodorov, B.I. and E.N. Timin. Nerve impulse propagation along nonuniform fibres (investigations using mathematical models).Prog. Biophys. Mol. Biol. 30:145–184, 1975.PubMedGoogle Scholar
  73. 73.
    Khodorov, B.I., E.N. Timin, S.A. Vilenkin, and F.B. Gul'ko. Theoretical analysis of the mechanisms of conduction of a nerve pulse over an inhomogeneous axon. I. Conduction through a portion with increased diameter.Biophysics (Eng. Transl.Biofizika) 14:323–335, 1969.Google Scholar
  74. 74.
    Khodorov, B.I., E.N. Timin, S.A. Vilenkin, and F.B. Gul'ko. Theoretical analysis of the mechanisms of conduction of a nerve impulse along an inhomogeneous axon. II. Conduction of a single impulse across a region of the fibre with modified functional properties.Biophysics (Eng. Transl.Biofizika) 15:145–152, 1970.Google Scholar
  75. 75.
    Kootsey, J.M. Voltage clamp simulation.Fed. Proc. Fed. Am. Soc. Exp. Biol. 34:1343–1349, 1975.Google Scholar
  76. 76.
    Langer, G.A. Sodium exchange in dog ventricular muscle. Relation to frequencyof contraction and its possible role in the control of myocardial contractility.J. Gen. Physiol. 50:1221–1239, 1967.CrossRefPubMedGoogle Scholar
  77. 77.
    Langer, G.A. and S.D. Serena. Effects of strophanthidin upon contraction and ionic exchange in rabbit ventricular myocardium: Relation to control of active state.J. Mol. Cell. Cardiol. 1:65–90, 1970.PubMedGoogle Scholar
  78. 78.
    Lewis, T. and A.M. Master. Observations upon conduction in the mammalian heart. A-V conduction.Heart 12:209–269, 1925.Google Scholar
  79. 79.
    Lewis, T., J. Meakins, and P.D. White. The excitatory process in the dog's heart. Part. I. The auricles.Philos. Trans. Roy. Soc. London 205:375–420, 1914.Google Scholar
  80. 80.
    Lieberman, M., T. Sawanobori, J.M. Kootsey, and E.A. Johnson. A synthetic strand of cardiac muscle. Its passive electrical properties.J. Gen. Physiol. 65:527–550, 1975.CrossRefPubMedGoogle Scholar
  81. 81.
    Loewenstein, W.R. Permeability of membrane junctions.Ann. NY Acad. Sci. 137:441–472, 1966.PubMedGoogle Scholar
  82. 82.
    Mathias, R.T., J.L. Rae, and R.S. Eisenberg. The lens as a nonuniform spherical syncytium.Biophys. J. 34:61–83, 1981.PubMedGoogle Scholar
  83. 83.
    Mayr, E. Evolution.Sci. Am. 239:47–55, 1978.Google Scholar
  84. 84.
    McAllister, R.E., D. Noble, and R.W. Tsien. Reconstruction of the electrical activity of cardiac Purkinje fibres.J. Physiol. (Lond.) 251:1–59, 1975.Google Scholar
  85. 85.
    McNutt, N.S. and R.S. Weinstein. The ultrastructure of the nexus. A correlated thin-section and freezecleave study.J. Cell Biol. 47:666–688, 1970.CrossRefPubMedGoogle Scholar
  86. 86.
    Mendez, C., W.J. Mueller, and X. Urguiaga. Propagation of impulses across the Purkinje fiber-muscle junctions in the dog heart.Circ. Res. 26:135–150, 1970.PubMedGoogle Scholar
  87. 87.
    Meves, H. Inactivation of the sodium permeability in squid giant nerve fibres.Prog. Biophys. Mol. Biol. 33:207–230, 1978.PubMedGoogle Scholar
  88. 88.
    Muir, A.R. An electron microscope study of the embryology of the intercalated disc in the heart of the rabbit.J. Biophys. Biochem. Cytol. 3:193–202, 1957.PubMedGoogle Scholar
  89. 89.
    Muir, A.R. Further observations on the cellular structure of cardiac muscle.J. Anat. (Lond.) 99:27–46, 1965.Google Scholar
  90. 90.
    Noble, D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations.Nature 188:495–497, 1960.Google Scholar
  91. 91.
    Noble, D. Computed action potentials and their experimental basis.Excerpta Med. Int. Congr. Ser. 47:177–182, 1962.Google Scholar
  92. 92.
    Noble, D. Applications of Hodgkin-Huxley equations to excitable tissues.Physiol. Rev. 46:1–50, 1966.PubMedGoogle Scholar
  93. 93.
    Paes de Carvalho, A., E.A.C. Garcia, and T.A. Saldëna. Phase-plane analysis of propagated electrical activity in muscle cells.Pontif. Accad. Sci. Scr. Var. 40:153–174, 1976.Google Scholar
  94. 94.
    Pastushenko, V.F., V.S. Markin, and Y.A. Chizmadzhev. Propagation of excitation in a model of the inhomogeneous nerve fibre. III. Interaction of pulses in the region of the branching node of anerve fibre.Biophsics 14:929–937, 1969.Google Scholar
  95. 95.
    Reber, W.R. and R. Weingart. Ungulate cardiac Purkinje fibres: The influence of intracellular pH on the electrical cell-to-cell coupling.J. Physiol. (Lond.) 328:87–104, 1982.Google Scholar
  96. 96.
    Reuter, H. Properties of two inward membrane currents in the heart.Annu. Rev. Physiol. 41:413–424, 1979.CrossRefPubMedGoogle Scholar
  97. 97.
    Reuter, H. and N. Seitz. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition.J. Physiol. (Lond.) 195:451–470, 1968.Google Scholar
  98. 98.
    Ruffner, J.A., N. Sperelakis, and J.E. Mann, Jr. Application of the Hodgkin-Huxley equations to an electric field model for interaction between excitable cells.J. Theor. Biol. 87:129–152, 1980.CrossRefPubMedGoogle Scholar
  99. 99.
    Sachs, F. and P. Specht. Sodium currents in single cardiac Purkinje cells. Abstract.Biophys. J. 33: 121a, 1981.Google Scholar
  100. 100.
    Sano, T., N. Takayama, and T. Shimamoto. Directional difference of conduction velocity in cardiac ventricular syncytium studied by microelectrodes.Circ. Res. 7:262–267, 1959.PubMedGoogle Scholar
  101. 101.
    Sharp, G.H. and R.W. Joyner. Simulated propagation of cardiac action potentials.Biophys. J. 31:403–423, 1980.PubMedGoogle Scholar
  102. 102.
    Singer, D.H., R. Lazzara, and B.F. Hoffman. Interrelationships between automaticity and conduction in Purkinje fibers.Circ. Res. 21:537–558, 1967.PubMedGoogle Scholar
  103. 103.
    Sjöstrand, F.S., and E. Andersson. Electron microscopy of the intercalated disc of cardiac muscle tissue.Experientia 10:369–370, 1954.PubMedGoogle Scholar
  104. 104.
    Socolar, S.J. The coupling coefficient as an index of junctional conductance.J. Membr. Biol. 34:29–37, 1977.PubMedGoogle Scholar
  105. 105.
    Sommer, J.R. and P.C. Dolber. Cardiac Muscle: The ultrastructure of its cells and bundles. InNormal and Abnormal Conduction of the Heart Beat, edited by A. Paes de Carvalho, B.F. Hoffman, and M. Lieberman. Mt. Kisco. N.Y.: Futura 1982, pp. 1–27.Google Scholar
  106. 106.
    Sommer, J.R. and E.A. Johnson. Ultrastructure of cardiac muscle. InHandbook of Physiology, sec 2, Vol I, the Heart, edited by R.M. Berne, N. Sperelakis, and S.R. Geiger. Bethesda: American Physiological Society, 1979, pp. 113–186.Google Scholar
  107. 107.
    Spach, M.S. The electrical representation of cardiac muscle based on discontinuities of axial resistivity at a microscopic and macroscopic level. A basis for saltatory propagation in cardiac muscle. In:Normal and Abnormal Conduction of the Heart Beat, edited by A. Paes de Carvalho, B.F. Hoffman, and M. Lieberman. Mt. Kisco, N.Y.: Futura, 1982, pp. 145–178.Google Scholar
  108. 108.
    Spach, M.S. and J.M. Kootsey. The nature of electrical propagation in cardiac muscle.Am. J. Physiol. 244 (Heart Circ. Physiol. 13):H3-H22, 1983.PubMedGoogle Scholar
  109. 109.
    Spach, M.S., J.M. Kootsey, and J.D. Sloan. Active modulation of electrical coupling between cardiac cells of the dog. A mechanism for transient and steady state variations in conduction velocity.Circ. Res. 51:347–362, 1982.PubMedGoogle Scholar
  110. 110.
    Spach, M.S., W.T. Miller III, P.C. Dolber, J.M. Kootsey, J.R. Sommer, and C.E. Mosher, Jr. The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity.Circ. Res. 50:175–191, 1982.PubMedGoogle Scholar
  111. 111.
    Spach, M.S., W.T. Miller III, D.B. Geselowitz, R.C. Barr, J.M. Kootsey, and E.A. Johnson. The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents.Circ. Res. 48:39–54, 1981.PubMedGoogle Scholar
  112. 112.
    Spach, M.S., W.T. Miller III, E. Miller-Jones, R.B. Warren, and R.C. Barr. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.Circ. Res. 45:188–204, 1979.PubMedGoogle Scholar
  113. 113.
    Sperelakis, N. and R.L. MacDonald. Ratio of transverse to longitudinal resistivities of isolated cardiac muscle fiber bundles.J. Electrocardiol. 7:301–314, 1974.PubMedGoogle Scholar
  114. 114.
    Sperelakis, N. and J.E. Mann, Jr. Evaluation of electric field changes in the cleft between excitable cells.J. Theor. Biol. 64:71–96, 1977.CrossRefPubMedGoogle Scholar
  115. 115.
    Spray, D.C., A.L. Harris, and M.V.L. Bennett. Voltage dependence of junctional conductance in early amphibian embryos.Science 204:432–434, 1979.PubMedGoogle Scholar
  116. 116.
    Spray, D.C., A.L. Harris, and M.V.L. Bennett. Equilibrium properties of a voltage-dependent junctional conductance.J. Gen. Physiol. 77:77–93, 1981.CrossRefPubMedGoogle Scholar
  117. 117.
    Stämpfli, R. Saltatory conduction in nerve.Physiol. Rev. 34:101–112, 1954.PubMedGoogle Scholar
  118. 118.
    Strichartz, G. and I. Cohen.\(\dot V_{max} \) as a measure of\(\bar g_{Na} \) in nerve and cardiac membranes.Biophys. J. 23:153–156, 1978.PubMedGoogle Scholar
  119. 119.
    Tasaki, I. and S. Hagiwara. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride.J. Gen. Physiol. 40:859–885, 1957.CrossRefPubMedGoogle Scholar
  120. 120.
    Taylor, R.E. Cable theory. InPhysical Techniques in Biological Research, edited by W.L. Nastuk. New York: Academic Press, 1963, vol. 6, pp. 219–262.Google Scholar
  121. 121.
    Thomson, W. On the theory of the electric telegraph. [From theProc. Royal Soc., May, 1855] InMathematical and Physical Papers, Vol. 2, by Sir William Thomson (Lord Kelvin). Cambridge: University Press, 1884, pp. 61–76.Google Scholar
  122. 122.
    Tsuboi, N., T. Furuta, I. Kodama, J. Toyama, and K. Yamada. Anisotropic conduction properties on canine ventricular muscles under high extracellular potassium concentration. Environmental Medicine 26:95–100, 1982.Google Scholar
  123. 123.
    Van Breemen, V.L. Intercalated dises in heart muscle studied with the electron microscope.Anat. Rec. 117:49–63, 1953.Google Scholar
  124. 124.
    Van Capelle, F.J.L. and M.J. Janse. Influence of geometry on the shape of the propagated action potential. InThe Conduction System of the Heart, edited by H.J.J. Wellens, K.I. Lie, and M.J. Janse. Philadelphia, Lea and Febiger, 1976, pp. 316–335.Google Scholar
  125. 125.
    Viersma, J.W. Hartfrequentie en impulsgeleiding in het atrium. Ph.D. thesis. Amsterdam: Drukkerij Cloeck en Moedigh N.V., 1969.Google Scholar
  126. 126.
    Wagner, M.L., R. Lazzara, R.M. Weiss, and B.F. Hoffman. Specialized conducting fibers in the interatrial band.Circ. Res. 18:502–518, 1966.PubMedGoogle Scholar
  127. 127.
    Watanabe, Y. Modification of the maximal rate of phase 0 depolarization (\(\dot V_{max} \)) in single myocardial cells by the direction of the spread of excitation. Abstract.J. Mol. Cell. Cardiol. 9 (Supp. 11):37, 1977.Google Scholar
  128. 128.
    Waxman, S.G. Determinants of conduction velocity in myelinated nerve fibers.Muscle Nerve 3:141–150, 1980.CrossRefPubMedGoogle Scholar
  129. 129.
    Weidmann, S. The electrical constants of Purkinje fibres.J. Physiol. (Lond.) 118:348–360, 1952.Google Scholar
  130. 130.
    Weidmann, S. The effect of the cardiac membrane potential on the rapid availability of the sodiumcarrying system.J. Physiol. (Lond.) 127:213–224, 1955.Google Scholar
  131. 131.
    Weidmann, S. The functional significance of the intercalated disks. InElectrophysiology of the Heart, edited by B. Taccardi and G. Marchetti. Oxford: Pergamon Press, 1965, pp. 149–152.Google Scholar
  132. 132.
    Weidmann, S. Electrical constants of trabecular muscle from mammalian heart.J. Physiol. (Lond.) 210:1041–1054, 1970.Google Scholar
  133. 133.
    Woodbury, J.W. and W.E. Crill. On the problem of impulse conduction in the atrium. InNervous Inhibition, edited by E. Florey. New York: Pergamon Press, 1965, pp. 124–135.Google Scholar

Copyright information

© Pergamon Press Ltd 1984

Authors and Affiliations

  • Madison S. Spach
    • 1
  1. 1.Departments of Pediatrics and PhysiologyDuke University School of MedicineDurham

Personalised recommendations