Advertisement

Journal of Mathematical Sciences

, Volume 75, Issue 6, pp 2011–2027 | Cite as

The classes Bm,1 and Hölder continuity for doubly degenerate parabolic equations

  • A. V. Ivanov
Article

Abstract

Inner and boundary Hölder estimates for nonnegative weak solutions of quasilinear doubly degenerate parabolic equations are established. The proof of these results is based on studing some classes Bm,1 that can be considered as extensions of the classes B2 introduced by Ladyzhenskaya and Uraltseva and the classes Bm introduced by DiBenedetto. The embedding of the classes Bm,1 in appropriate Hölder spaces is proved. Bibliography: 20 titles.

Keywords

Weak Solution Parabolic Equation Degenerate Parabolic Equation Nonnegative Weak Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva,Linear and Quasilinear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967).Google Scholar
  2. 2.
    Chen Ya-Zhe, “Hölder estimates for solutions of uniformly degenerate quasilinear parabolic equations”,Chin. Ann. Math.,58, No. 4, 666–678 (1984).Google Scholar
  3. 3.
    E. DiBenedetto and A. Friedman, “Hölder estimates for nonlinear degenerate parabolic systems”,J. Reine Math.,357, 83–128 (1985).MathSciNetGoogle Scholar
  4. 4.
    A. V. Ivanov, “Estimates of the Hölder constant of weak solutions of degenerate parabolic equations”,Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 152, 21–44 (1986).zbMATHGoogle Scholar
  5. 5.
    E. DiBenedetto, “On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients”,Ann. Sc. Norm. Sup.,13, No. 3, 485–535 (1986).MathSciNetGoogle Scholar
  6. 6.
    E. DiBenedetto and Chen Ya-Zhe, “On the local behavior of solutions of singular parabolic equations”,Arch. Rat. Mech. Anal.,103, No. 4, 319–346 (1988).Google Scholar
  7. 7.
    A. V. Ivanov, “Hölder estimates for quasilinear parabolic equations with double degeneracy”,Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI),171, 70–105 (1989).zbMATHGoogle Scholar
  8. 8.
    A. V. Ivanov, “Uniform Hölder estimates for weak solutions of quasilinear doubly degenerate parabolic equations”, (Preprint), LOMI, No. E-10-89, Leningrad (1989).Google Scholar
  9. 9.
    A. V. Ivanov, “Uniform Hölder estimates for generalized solutions of quasilinear parabolic equations admitting double degeneracy”,St. Petersburg Math. J.,3, No. 2, 139–179 (1991).zbMATHGoogle Scholar
  10. 10.
    A. V. Ivanov, “Boundary Hölder estimates for weak solutions of quasilinear doubly degenerate parabolic equations”,Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI),183, 45–69 (1991).Google Scholar
  11. 11.
    A. V. Ivanov, and P. Z. Mkrtchan, “On existence of Hölder continuous weak solutions of the first boundary value problem for quasilinear doubly degenerate parabolic equations”,Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI),182, 5–28 (1990).Google Scholar
  12. 12.
    A. V. Ivanov and P. Z. Mkrtchan, “The weight estimate of gradient of nonnegative weak solutions of quasilinear parabolic equations admitting double degeneracy”,Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI),181, 3–23 (1990).Google Scholar
  13. 13.
    A. V. Ivanov and P. Z. Mkrtchan, “On the regularity up to the boundary of weak solutions of the first boundary value problem for quasilinear doubly degenerate parabolic equations”,Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI),196, 3–23 (1991).Google Scholar
  14. 14.
    J. R. Esteban and J. L. Vazques, “On the equation of turbulent filtration in one-dimensional porous media”,Nonl. Anal. TMA, No. 11, 1303–1325 (1989).Google Scholar
  15. 15.
    A. V. Ivanov,Quasilinear degenerate and nonuniformly elliptic and parabolic equations of second order, Proceedings of the Steklov Institute of Mathematics,160 (1982).Google Scholar
  16. 16.
    A. S. Kalaschnikov, “Questions of the theory of degenerate parabolic equations”,Usp. Mat. Nauk,42, No. 2, 135–176 (1987).Google Scholar
  17. 17.
    P. A. Raviart, “Sur la résolution de certaines équations paraboliques non linéaires”,J. Funct. Anal.,5, 299–328 (1970).CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    J.-L. Lions,Quelques Méthodes de Résolution de Problèmes aux Limites non Lineaires, Dunod, Paris (1969).Google Scholar
  19. 19.
    A. Bamberger, “Etude d'une equation doublement non linéaire”,J. Funct. Anal.,24, 148–155 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    M. Tsutsumi, “On solutions of some doubly nonlinear degenerate parabolic equations with absorption”,J. Math. Anal. Appl.,60, 543–549 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. V. Ivanov

There are no affiliations available

Personalised recommendations